Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jan 13;5(1):e8564.
doi: 10.1371/journal.pone.0008564.

Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure

Affiliations

Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure

Mehregan Movassagh et al. PLoS One. .

Abstract

Epigenetic mechanisms such as microRNA and histone modification are crucially responsible for dysregulated gene expression in heart failure. In contrast, the role of DNA methylation, another well-characterized epigenetic mark, is unknown. In order to examine whether human cardiomyopathy of different etiologies are connected by a unifying pattern of DNA methylation pattern, we undertook profiling with ischaemic and idiopathic end-stage cardiomyopathic left ventricular (LV) explants from patients who had undergone cardiac transplantation compared to normal control. We performed a preliminary analysis using methylated-DNA immunoprecipitation-chip (MeDIP-chip), validated differential methylation loci by bisulfite-(BS) PCR and high throughput sequencing, and identified 3 angiogenesis-related genetic loci that were differentially methylated. Using quantitative RT-PCR, we found that the expression of these genes differed significantly between CM hearts and normal control (p<0.01). Moreover, for each individual LV tissue, differential methylation showed a predicted correlation to differential expression of the corresponding gene. Thus, differential DNA methylation exists in human cardiomyopathy. In this series of heterogeneous cardiomyopathic LV explants, differential DNA methylation was found in at least 3 angiogenesis-related genes. While in other systems, changes in DNA methylation at specific genomic loci usually precede changes in the expression of corresponding genes, our current findings in cardiomyopathy merit further investigation to determine whether DNA methylation changes play a causative role in the progression of heart failure.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Differential DNA methylation profile for 3 candidate CM-DMR.
(A) DMR24, (B) DMR36 and (C) DMR11. DNA methylation (%) was determined for a set of 8 LV samples (4 controls: B–E, 4 diseased (CM): IV–VII) by BS-PCR-sequencing as detailed in methods. Lower panel, DMR24 and DMR36 lie within the body of the genes: AMOTL2 and ARHGAP24; whereas DMR11 lies in the 5′ regulatory region of PECAM1.
Figure 2
Figure 2. Differential DNA methylation for 3 CM-DMR correlates with differential gene expression.
(A–C) Gene expression profiles for the gene corresponding to each DMR: AMOTL2, ARHGAP24, and PECAM1. Quantitative PCR was performed in a set of 11 LV samples (4 controls: C–F, 7 CM: II–VIII). QPCR experiments were performed in triplicate for each sample. ** p<0.05. (D–F) Correlation between gene expression and DNA methylation using Spearmans rank order correlation coefficient.

References

    1. Mudd JO, Kass DA. Tackling heart failure in the twenty-first century. Nature. 2008;451:919–928. - PubMed
    1. Hill JA, Olson EN. Cardiac plasticity. N Engl J Med. 2008;358:1370–1380. - PubMed
    1. Dorn GW, 2nd, Matkovich SJ. Put your chips on transcriptomics. Circulation. 2008;118:216–218. - PubMed
    1. Heidecker B, Kasper EK, Wittstein IS, Champion HC, Breton E, et al. Transcriptomic biomarkers for individual risk assessment in new-onset heart failure. Circulation. 2008;118:238–246. - PMC - PubMed
    1. van Rooij E, Liu N, Olson EN. MicroRNAs flex their muscles. Trends Genet. 2008;24:159–166. - PubMed

Publication types