Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Feb 1;213(3):433-44.
doi: 10.1242/jeb.038059.

Effects of cadmium exposure and intermittent anoxia on nitric oxide metabolism in eastern oysters, Crassostrea virginica

Affiliations

Effects of cadmium exposure and intermittent anoxia on nitric oxide metabolism in eastern oysters, Crassostrea virginica

A V Ivanina et al. J Exp Biol. .

Abstract

Nitric oxide (NO) is an intracellular signaling molecule synthesized by a group of enzymes called nitric oxide synthases (NOS) and involved in regulation of many cellular functions including mitochondrial metabolism and bioenergetics. In invertebrates, the involvement of NO in bioenergetics and metabolic responses to environmental stress is poorly understood. We determined sensitivity of mitochondrial and cellular respiration to NO and the effects of cadmium (Cd) and intermittent anoxia on NO metabolism in eastern oysters, Crassostrea virginica. NOS activity was strongly suppressed by exposure to 50 microg l(-1) Cd for 30 days (4.76 vs 1.19 pmol NO min(-1) mg(-1) protein in control and Cd-exposed oysters, respectively) and further decreased during anoxic exposure in Cd-exposed oysters but not in their control counterparts. Nitrate/nitrite content (indicative of NO levels) decreased during anoxic exposure to less than 10% of the normoxic values and recovered within 1 h of re-oxygenation in control oysters. In Cd-exposed oysters, the recovery of the normoxic NO levels lagged behind, reflecting their lower NOS activity. Oyster mitochondrial respiration was inhibited by exogenous NO, with sensitivity on a par with that of mammalian mitochondria, and ADP-stimulated mitochondrial respiration was significantly more sensitive to NO than resting respiration. In isolated gill cells, manipulations of endogenous NOS activity either with a specific NOS inhibitor (aminoguanidine) or a NOS substrate (L-arginine) had no effect on respiration, likely due to the fact that mitochondria in the resting state are relatively NO insensitive. Likewise, Cd-induced stimulation of cellular respiration did not correlate with decreased NOS activity in isolated gill cells. High sensitivity of phosphorylating (ADP-stimulated) oyster mitochondria to NO suggests that regulation of bioenergetics is an evolutionarily conserved function of NO and that NO-dependent regulation of metabolism may be most prominent under the conditions of high metabolic flux when the ADP-to-ATP ratio is high.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources