Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Feb 1;213(3):459-68.
doi: 10.1242/jeb.029363.

Basolateral NBCe1 plays a rate-limiting role in transepithelial intestinal HCO3- secretion, contributing to marine fish osmoregulation

Affiliations

Basolateral NBCe1 plays a rate-limiting role in transepithelial intestinal HCO3- secretion, contributing to marine fish osmoregulation

J R Taylor et al. J Exp Biol. .

Abstract

Although endogenous CO2 hydration and serosal HCO3- are both known to contribute to the high rates of intestinal HCO3- secretion important to marine fish osmoregulation, the basolateral step by which transepithelial HCO3- secretion is accomplished has received little attention. Isolated intestine HCO3- secretion rates, transepithelial potential (TEP) and conductance were found to be dependent on serosal HCO3- concentration and sensitive to serosal DIDS. Elevated mucosal Cl- concentration had the unexpected effect of reducing HCO3- secretion rates, but did not affect electrophysiology. These characteristics indicate basolateral limitation of intestinal HCO3- secretion in seawater gulf toadfish, Opsanus beta. The isolated intestine has a high affinity for serosal HCO3- in the physiological range (Km=10.2 mmol l(-1)), indicating a potential to efficiently fine-tune systemic acid-base balance. We have confirmed high levels of intestinal tract expression of a basolateral Na+/HCO3- cotransporter of the electrogenic NBCe1 isoform in toadfish (tfNBCe1), which shows elevated expression following salinity challenge, indicating its importance in marine fish osmoregulation. When expressed in Xenopus oocytes, isolated tfNBCe1 has transport characteristics similar to those in the isolated tissue, including a similar affinity for HCO3- (Km=8.5 mmol l(-1)). Reported affinity constants of NBC1 for Na+ are generally much lower than physiological Na+ concentrations, suggesting that cotransporter activity is more likely to be modulated by HCO3- rather than Na+ availability in vivo. These similar functional characteristics of isolated tfNBCe1 and the intact tissue suggest a role of this cotransporter in the high HCO3- secretion rates of the marine fish intestine.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources