Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010;28(1):9-18.
doi: 10.3233/RNN-2010-0523.

Saccade and vestibular ocular motor adaptation

Affiliations
Review

Saccade and vestibular ocular motor adaptation

Michael C Schubert et al. Restor Neurol Neurosci. 2010.

Abstract

Purpose: This paper focuses on motor learning within the saccadic and vestibulo-ocular reflex (VOR) oculomotor systems, vital for our understanding how the brain keeps these subsystems calibrated in the presence of disease, trauma, and the changes that invariably accompany normal development and aging. We will concentrate on new information related to multiple time scales of saccade motor learning, adaptation of the VOR during high-velocity impulses, and the role of saccades in VOR adaptation. The role of the cerebellum in both systems is considered.

Methods: Review of data involving saccade and VOR motor learning.

Results: Data supports learning within the saccadic and VOR oculomotor systems is influenced by 1). Multiple time scales, with different rates of both learning and forgetting (seconds, minutes, hours, days, and months). In the case of forgetting, relearning on a similar task may be faster. 2). Pattern of training, learning and forgetting are not similarly achieved. Different contexts require different motor behaviors and rest periods between training sessions can be important for memory consolidation.

Conclusions: The central nervous system has the difficult task of determining where blame resides when motor performance is impaired (the credit assignment problem). Saccade and VOR motor learning takes place at multiple levels within the nervous system, from alterations in ion channel and membrane properties on single neurons, to more complex changes in neural circuit behavior and higher-level cognitive processes including prediction.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Alahyane N, Fonteille V, Urquizar C, Salemme R, Nighoghossian N, Pelisson D, Tilikete C. Separate Neural Substrates in the Human Cerebellum for Sensory-motor Adaptation of Reactive and of Scanning Voluntary Saccades. Cerebellum. 2008;7(4):595–601. - PubMed
    1. Baloh RW, Sills AW, Kumely WE, et al. Quantitative measurement of saccade amplitude, duration, and velocity. Neurol. 1975;25:1065–1070. - PubMed
    1. Barash S, Melikyan A, Sivakov A, Zhang M, Glickstein M, Thier P. Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci. 1999 Dec 15;19(24):10931–10939. - PMC - PubMed
    1. Barzilai A, Kennedy TE, Sweat JD, Kandel ER. 5-HT modulates protein synthesis and the expression of specific proteins during long-term facilitation in Aplysia sensory neurons. Neuron. 1989;2:1577–1586. - PubMed
    1. Blazquez P, Partsalis A, Gerrits NM, Highstein SM. Input of anterior and posterior semicircular canal interneurons encoding head-velocity to the dorsal Y group of the vestibular nuclei. J Neurophys. 2000 May;83(5):2891–2904. - PubMed

Publication types

MeSH terms