The dynamics of conjunctive and disjunctive Boolean network models
- PMID: 20087672
- DOI: 10.1007/s11538-010-9501-z
The dynamics of conjunctive and disjunctive Boolean network models
Abstract
For many biological networks, the topology of the network constrains its dynamics. In particular, feedback loops play a crucial role. The results in this paper quantify the constraints that (unsigned) feedback loops exert on the dynamics of a class of discrete models for gene regulatory networks. Conjunctive (resp. disjunctive) Boolean networks, obtained by using only the AND (resp. OR) operator, comprise a subclass of networks that consist of canalyzing functions, used to describe many published gene regulation mechanisms. For the study of feedback loops, it is common to decompose the wiring diagram into linked components each of which is strongly connected. It is shown that for conjunctive Boolean networks with strongly connected wiring diagram, the feedback loop structure completely determines the long-term dynamics of the network. A formula is established for the precise number of limit cycles of a given length, and it is determined which limit cycle lengths can appear. For general wiring diagrams, the situation is much more complicated, as feedback loops in one strongly connected component can influence the feedback loops in other components. This paper provides a sharp lower bound and an upper bound on the number of limit cycles of a given length, in terms of properties of the partially ordered set of strongly connected components.
Similar articles
-
Regulatory patterns in molecular interaction networks.J Theor Biol. 2011 Nov 7;288:66-72. doi: 10.1016/j.jtbi.2011.08.015. Epub 2011 Aug 24. J Theor Biol. 2011. PMID: 21872607
-
Reduction of Boolean network models.J Theor Biol. 2011 Nov 21;289:167-72. doi: 10.1016/j.jtbi.2011.08.042. Epub 2011 Sep 5. J Theor Biol. 2011. PMID: 21907211
-
Intrinsic properties of Boolean dynamics in complex networks.J Theor Biol. 2009 Feb 7;256(3):351-69. doi: 10.1016/j.jtbi.2008.10.014. Epub 2008 Oct 29. J Theor Biol. 2009. PMID: 19014957
-
Positive and negative cycles in Boolean networks.J Theor Biol. 2019 Feb 21;463:67-76. doi: 10.1016/j.jtbi.2018.11.028. Epub 2018 Dec 5. J Theor Biol. 2019. PMID: 30528341 Review.
-
Network nonlinearities in drug treatment.Interdiscip Sci. 2013 Jun;5(2):85-94. doi: 10.1007/s12539-013-0165-x. Epub 2013 Jun 6. Interdiscip Sci. 2013. PMID: 23740389 Review.
Cited by
-
ADAM: analysis of discrete models of biological systems using computer algebra.BMC Bioinformatics. 2011 Jul 20;12:295. doi: 10.1186/1471-2105-12-295. BMC Bioinformatics. 2011. PMID: 21774817 Free PMC article.
-
Probabilistic polynomial dynamical systems for reverse engineering of gene regulatory networks.EURASIP J Bioinform Syst Biol. 2011 Jun 6;2011(1):1. doi: 10.1186/1687-4153-2011-1. EURASIP J Bioinform Syst Biol. 2011. PMID: 21910920 Free PMC article.
-
Modular control of Boolean network models.ArXiv [Preprint]. 2024 Nov 4:arXiv:2401.12477v3. ArXiv. 2024. Update in: Bull Math Biol. 2025 Jun 3;87(7):91. doi: 10.1007/s11538-025-01471-9. PMID: 38344220 Free PMC article. Updated. Preprint.
-
Attractor detection and enumeration algorithms for Boolean networks.Comput Struct Biotechnol J. 2022 May 21;20:2512-2520. doi: 10.1016/j.csbj.2022.05.027. eCollection 2022. Comput Struct Biotechnol J. 2022. PMID: 35685366 Free PMC article. Review.
-
Modular Control of Boolean Network Models.Bull Math Biol. 2025 Jun 3;87(7):91. doi: 10.1007/s11538-025-01471-9. Bull Math Biol. 2025. PMID: 40461704 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources