Bayesian adjustment for exposure misclassification in case-control studies
- PMID: 20087839
- DOI: 10.1002/sim.3829
Bayesian adjustment for exposure misclassification in case-control studies
Abstract
Poor measurement of explanatory variables occurs frequently in observational studies. Error-prone observations may lead to biased estimation and loss of power in detecting the impact of explanatory variables on the response. We consider misclassified binary exposure in the context of case-control studies, assuming the availability of validation data to inform the magnitude of the misclassification. A Bayesian adjustment to correct the misclassification is investigated. Simulation studies show that the Bayesian method can have advantages over non-Bayesian counterparts, particularly in the face of a rare exposure, small validation sample sizes, and uncertainty about whether exposure misclassification is differential or non-differential. The method is illustrated via application to several real studies.
2010 John Wiley & Sons, Ltd.
Similar articles
-
Curious phenomena in Bayesian adjustment for exposure misclassification.Stat Med. 2006 Jan 15;25(1):87-103. doi: 10.1002/sim.2341. Stat Med. 2006. PMID: 16220473
-
Binary regression with misclassified response and covariate subject to measurement error: a bayesian approach.Biom J. 2008 Feb;50(1):123-34. doi: 10.1002/bimj.200710402. Biom J. 2008. PMID: 18283683
-
A Bayesian approach to prospective binary outcome studies with misclassification in a binary risk factor.Stat Med. 2005 Nov 30;24(22):3463-77. doi: 10.1002/sim.2192. Stat Med. 2005. PMID: 16237661
-
Statistical inference for stochastic simulation models--theory and application.Ecol Lett. 2011 Aug;14(8):816-27. doi: 10.1111/j.1461-0248.2011.01640.x. Epub 2011 Jun 17. Ecol Lett. 2011. PMID: 21679289 Review.
-
Bayesian normalization and identification for differential gene expression data.J Comput Biol. 2005 May;12(4):391-406. doi: 10.1089/cmb.2005.12.391. J Comput Biol. 2005. PMID: 15882138 Review.
Cited by
-
Sensitivity analyses for sparse-data problems-using weakly informative bayesian priors.Epidemiology. 2013 Mar;24(2):233-9. doi: 10.1097/EDE.0b013e318280db1d. Epidemiology. 2013. PMID: 23337241 Free PMC article.
-
Markov chain Monte Carlo: an introduction for epidemiologists.Int J Epidemiol. 2013 Apr;42(2):627-34. doi: 10.1093/ije/dyt043. Int J Epidemiol. 2013. PMID: 23569196 Free PMC article.
-
Using bayesian models to assess the effects of under-reporting of cannabis use on the association with birth defects, national birth defects prevention study, 1997-2005.Paediatr Perinat Epidemiol. 2014 Sep;28(5):424-33. doi: 10.1111/ppe.12140. Epub 2014 Aug 26. Paediatr Perinat Epidemiol. 2014. PMID: 25155701 Free PMC article.
-
Natural Language Processing Improves Reliable Identification of COVID-19 Compared to Diagnostic Codes Alone.Am J Epidemiol. 2025 Jul 30:kwaf162. doi: 10.1093/aje/kwaf162. Online ahead of print. Am J Epidemiol. 2025. PMID: 40731247 Free PMC article.
-
Bias Analysis Gone Bad.Am J Epidemiol. 2021 Aug 1;190(8):1604-1612. doi: 10.1093/aje/kwab072. Am J Epidemiol. 2021. PMID: 33778845 Free PMC article.