Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Feb 10;58(3):1603-8.
doi: 10.1021/jf9036062.

Dehydroglyasperin C isolated from licorice caused Nrf2-mediated induction of detoxifying enzymes

Affiliations

Dehydroglyasperin C isolated from licorice caused Nrf2-mediated induction of detoxifying enzymes

Ji Yeon Seo et al. J Agric Food Chem. .

Abstract

Our preliminary experiment demonstrated that a n-hexane/EtOH (9:1, volume) extract of Glycyrrhiza uralensis (licorice) caused a significant induction of NAD(P)H:oxidoquinone reductase (NQO1), one of the well-known phase 2 detoxifying enzymes. We isolated dehydroglyasperin C (DGC) as a potent phase 2 enzyme inducer from licorice. DGC induced NQO1 both in wild-type murine hepatoma Hepa1c1c7 and ARNT-lacking BPRc1 cells, indicating that the compound is a monofunctional inducer. The compound induced not only NQO1 but also some other phase 2 detoxifying/antioxidant enzymes, such as glutathione S-transferase, gamma-glutamylcysteine synthase, glutathione reductase, and heme oxygenase 1. Similar to most monofunctional inducers, DGC caused the accumulation of Nrf2 in the nucleus in dose- and time-dependent manners and thereby activated expression of phase 2 detoxifying enzymes. It also resulted in a dose-dependent increase in the luciferase activity in the reporter assay, in which HepG2-C8 cells transfected with antioxidant response element (ARE)-luciferase construct were used, suggesting that the induction of phase 2 detoxifying and antioxidant enzymes could be achieved through the interaction of Nrf2 with the ARE sequence in the promoter region of their genes.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources