Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Mar;140(3):446-53.
doi: 10.3945/jn.109.115972. Epub 2010 Jan 20.

Laboratory, epidemiological, and human intervention studies show that tea (Camellia sinensis) may be useful in the prevention of obesity

Affiliations
Review

Laboratory, epidemiological, and human intervention studies show that tea (Camellia sinensis) may be useful in the prevention of obesity

Kimberly A Grove et al. J Nutr. 2010 Mar.

Abstract

Tea (Camellia sinensis, Theaceae) and tea polyphenols have been studied for the prevention of chronic diseases, including obesity. Obesity currently affects >20% of adults in the United States and is a risk factor for chronic diseases such as type II diabetes, cardiovascular disease, and cancer. Given this increasing public health concern, the use of dietary agents for the prevention of obesity would be of tremendous benefit. Whereas many laboratory studies have demonstrated the potential efficacy of green or black tea for the prevention of obesity, the underlying mechanisms remain unclear. The results of human intervention studies are mixed and the role of caffeine has not been clearly established. Finally, there is emerging evidence that high doses of tea polyphenols may have adverse side effects. Given that the results of scientific studies on dietary components, including tea polyphenols, are often translated into dietary supplements, understanding the potential toxicities of the tea polyphenols is critical to understanding their potential usefulness in preventing obesity. In this review, we will critically evaluate the evidence for the prevention of obesity by tea, discuss the relevance of proposed mechanisms in light of tea polyphenol bioavailability, and review the reports concerning the toxic effects of high doses of tea polyphenols and the implication that this has for the potential use of tea for the prevention of obesity. We hope that this review will expose areas for further study and encourage research on this important public health issue.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Structures of representative tea polyphenols and caffeine.
FIGURE 2
FIGURE 2
Reported mechanism(s) by which tea polyphenols may modulate body weight and energy balance. Tea polyphenols have been shown to inhibit de novo lipogenesis, increase lipid oxidation, increase carbohydrate utilization, and decrease carbohydrate uptake. Target tissues include the small intestine, the liver, adipose tissue, and skeletal muscle. Abbreviations: S. intestine, small intestine.

References

    1. Yang CS, Maliakal P, Meng X. Inhibition of carcinogenesis by tea. Annu Rev Pharmacol Toxicol. 2002;42:25–54. - PubMed
    1. Balentine DA, Wiseman SA, Bouwens LC. The chemistry of tea flavonoids. Crit Rev Food Sci Nutr. 1997;37:693–704. - PubMed
    1. Sang S, Tian S, Stark RE, Yang CS, Ho CT. New dibenzotropolone derivatives characterized from black tea using LC/MS/MS. Bioorg Med Chem. 2004;12:3009–17. - PubMed
    1. Menet MC, Sang S, Yang CS, Ho CT, Rosen RT. Analysis of theaflavins and thearubigins from black tea extract by MALDI-TOF mass spectrometry. J Agric Food Chem. 2004;52:2455–61. - PubMed
    1. Sang SM, Tian SY, Meng XF, Stark RE, Rosen RT, Yang CS, Ho CT. Theadibenzotropolone A, a new type pigment from enzymatic oxidation of (-)-epicatechin and (-)-epigallocatechin gallate and characterized from black tea using LC/MS/MS. Tetrahedron Lett. 2002;43:7129–33.

Publication types