Nitric oxide induces pathological synapse loss by a protein kinase G-, Rho kinase-dependent mechanism preceded by myosin light chain phosphorylation
- PMID: 20089906
- PMCID: PMC6633085
- DOI: 10.1523/JNEUROSCI.3911-09.2010
Nitric oxide induces pathological synapse loss by a protein kinase G-, Rho kinase-dependent mechanism preceded by myosin light chain phosphorylation
Abstract
The molecular signaling that underpins synapse loss in neuropathological conditions remains unknown. Concomitant upregulation of the neuronal nitric oxide (NO) synthase (nNOS) in neurodegenerative processes places NO at the center of attention. We found that de novo nNOS expression was sufficient to induce synapse loss from motoneurons at adult and neonatal stages. In brainstem slices obtained from neonatal animals, this effect required prolonged activation of the soluble guanylyl cyclase (sGC)/protein kinase G (PKG) pathway and RhoA/Rho kinase (ROCK) signaling. Synapse elimination involved paracrine/retrograde action of NO. Furthermore, before bouton detachment, NO increased synapse myosin light chain phosphorylation (p-MLC), which is known to trigger actomyosin contraction and neurite retraction. NO-induced MLC phosphorylation was dependent on cGMP/PKG-ROCK signaling. In adulthood, motor nerve injury induced NO/cGMP-dependent synaptic stripping, strongly affecting ROCK-expressing synapses, and increased the percentage of p-MLC-expressing inputs before synapse destabilization. We propose that this molecular cascade could trigger synapse loss underlying early cognitive/motor deficits in several neuropathological states.
Figures







References
-
- Abudara V, Alvarez AF, Chase MH, Morales FR. Nitric oxide as an anterograde neurotransmitter in the trigeminal motor pool. J Neurophysiol. 2002;88:497–506. - PubMed
-
- Anneser JM, Cookson MR, Ince PG, Shaw PJ, Borasio GD. Glial cells of the spinal cord and subcortical white matter up-regulate neuronal nitric oxide synthase in sporadic amyotrophic lateral sclerosis. Exp Neurol. 2001;171:418–421. - PubMed
-
- Bellamy TC, Griffiths C, Garthwaite J. Differential sensitivity of guanylyl cyclase and mitochondrial respiration to nitric oxide measured using clamped concentrations. J Biol Chem. 2002;277:31801–31807. - PubMed
-
- Benarroch EE. Rho GTPases: role in dendrite and axonal growth, mental retardation, and axonal regeneration. Neurology. 2007;68:1315–1318. - PubMed