Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes
- PMID: 2009357
- PMCID: PMC1281157
- DOI: 10.1016/S0006-3495(91)82234-2
Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes
Abstract
The noncolligative peptide and glycopeptide antifreezes found in some cold-water fish act by binding to the ice surface and preventing crystal growth, not by altering the equilibrium freezing point of the water. A simple crystal growth and etching technique allows determination of the crystallographic planes where the binding occurs. In the case of elongated molecules, such as the alpha-helical peptides in this report, it also allows a deduction of the molecular alignment on the ice surface. The structurally similar antifreeze peptides from winter flounder (Pseudopleuronectes americanus) and Alaskan plaice (Pleuronectes quadritaberulatus) adsorb onto the (2021) pyramidal planes of ice, whereas the sculpin (Myoxocephalus scorpius) peptide adsorbs on (2110), the secondary prism planes. All three are probably aligned along (0112). These antifreeze peptides have 11-amino acid sequence repeats ending with a polar residue, and each repeat constitutes a distance of 16.5 A along the helix, which nearly matches the 16.7 A repeat spacing along (0112) in ice. This structural match is undoubtedly important, but the mechanism of binding is not yet clear. The suggested mechanism of growth inhibition operates through the influence of local surface curvature upon melting point and results in complete inhibition of the crystal growth even though individual antifreeze molecules bind at only one interface orientation.
Similar articles
-
Adsorption to ice of fish antifreeze glycopeptides 7 and 8.Biophys J. 1993 Jan;64(1):252-9. doi: 10.1016/S0006-3495(93)81361-4. Biophys J. 1993. PMID: 8431545 Free PMC article.
-
Analysis of shorthorn sculpin antifreeze protein stereospecific binding to (2-1 0) faces of ice.Biophys J. 1996 Jul;71(1):8-18. doi: 10.1016/S0006-3495(96)79204-4. Biophys J. 1996. PMID: 8804585 Free PMC article.
-
Type I 'antifreeze' proteins. Structure-activity studies and mechanisms of ice growth inhibition.Eur J Biochem. 1999 Sep;264(3):653-65. doi: 10.1046/j.1432-1327.1999.00617.x. Eur J Biochem. 1999. PMID: 10491111 Review.
-
Inhibition of growth of nonbasal planes in ice by fish antifreezes.Proc Natl Acad Sci U S A. 1989 Feb;86(3):881-5. doi: 10.1073/pnas.86.3.881. Proc Natl Acad Sci U S A. 1989. PMID: 2915983 Free PMC article.
-
The mechanism by which fish antifreeze proteins cause thermal hysteresis.Cryobiology. 2005 Dec;51(3):262-80. doi: 10.1016/j.cryobiol.2005.07.007. Epub 2005 Sep 2. Cryobiology. 2005. PMID: 16140290 Review.
Cited by
-
Fluorescence microscopy evidence for quasi-permanent attachment of antifreeze proteins to ice surfaces.Biophys J. 2007 May 15;92(10):3663-73. doi: 10.1529/biophysj.106.096297. Epub 2007 Feb 26. Biophys J. 2007. PMID: 17325008 Free PMC article.
-
Intracellular and Extracellular Antifreeze Protein Significantly Improves Mammalian Cell Cryopreservation.Biomolecules. 2022 May 5;12(5):669. doi: 10.3390/biom12050669. Biomolecules. 2022. PMID: 35625597 Free PMC article.
-
Ice-Binding Protein from Shewanella frigidimarinas Inhibits Ice Crystal Growth in Highly Alkaline Solutions.Polymers (Basel). 2019 Feb 11;11(2):299. doi: 10.3390/polym11020299. Polymers (Basel). 2019. PMID: 30960283 Free PMC article.
-
A basic protein, N25, from a mollusk modifies calcium carbonate morphology and shell biomineralization.J Biol Chem. 2019 May 24;294(21):8371-8383. doi: 10.1074/jbc.RA118.007338. Epub 2019 Apr 9. J Biol Chem. 2019. PMID: 30967473 Free PMC article.
-
Fish-Derived Antifreeze Proteins and Antifreeze Glycoprotein Exhibit a Different Ice-Binding Property with Increasing Concentration.Biomolecules. 2020 Mar 9;10(3):423. doi: 10.3390/biom10030423. Biomolecules. 2020. PMID: 32182859 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources