Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May 1;181(9):957-68.
doi: 10.1164/rccm.200905-0786OC. Epub 2010 Jan 21.

Immunopathology and dexamethasone therapy in a new model for malaria-associated acute respiratory distress syndrome

Affiliations
Free article

Immunopathology and dexamethasone therapy in a new model for malaria-associated acute respiratory distress syndrome

Philippe E Van den Steen et al. Am J Respir Crit Care Med. .
Free article

Abstract

Rationale: Malaria infection is often complicated by malaria-associated acute respiratory distress syndrome (MA-ARDS), characterized by pulmonary edema and hemorrhages. No efficient treatments are available for MA-ARDS and its pathogenesis remains poorly understood.

Objectives: Development of a new animal model for MA-ARDS to explore the pathogenesis and possible treatments.

Methods: C57BL/6 mice were infected with Plasmodium berghei NK65, and the development of MA-ARDS was evaluated by the analysis of lung weight, histopathology, and bronchoalveolar lavages. Cytokine and chemokine expression in the lungs was analyzed by reverse transcription-polymerase chain reaction, and the accumulation of leukocyte subclasses was determined by flow cytometric analysis.

Measurements and main results: In this model, the pulmonary expression of several cytokines and chemokines was increased to a higher level than in mice infected with Plasmodium chabaudi AS, which does not cause MA-ARDS. By depletion experiments, CD8(+) T lymphocytes were shown to be pathogenic. High doses of dexamethasone blocked MA-ARDS, even when administered after appearance of the complication, and reduced pulmonary leukocyte accumulation and the expression of a monocyte/macrophage-attracting chemokine.

Conclusions: We developed a novel model of MA-ARDS with many similarities to human MA-ARDS and without cerebral complications. This contrasts with the more classical model with P. berghei ANKA, characterized by fulminant cerebral malaria. Hence, infection with P. berghei NK65 generates a broader time window to study the pathogenesis and to evaluate candidate treatments. The finding that high doses of dexamethasone cured MA-ARDS suggests that it might be more effective against MA-ARDS than it was in the clinical trials for cerebral malaria.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms