Kirkwood-Buff derived force field for alkali chlorides in simple point charge water
- PMID: 20095665
- DOI: 10.1063/1.3273903
Kirkwood-Buff derived force field for alkali chlorides in simple point charge water
Abstract
Solvated ions are a fundamental constituent of many biological systems. An important class consists of the alkali cations. In particular, potassium (K(+)) is the most abundant ion in the cytoplasm, whereas lithium (Li(+)), rubidium (Rb(+)), and cesium (Cs(+)) are of fundamental physicochemical and medical relevance. A powerful tool to understand ion specificity and cellular systems on a microscopic level is provided by molecular dynamics simulations. Previously, reliable force field parameters for Li(+), K(+), Rb(+), and Cs(+) in aqueous solution have not been available for the simple point charge (SPC) water model widely used in conjunction with the GROMOS force field. We used the Kirkwood-Buff theory to develop force fields for Li(+), K(+), Rb(+), and Cs(+) in SPC water to reproduce experimental data on respective aqueous alkali chloride solutions (LiCl, KCl, RbCl, CsCl). The force field developed reproduces many of the known properties of alkali metal chlorides solutions including densities and partial molar volumes. Our force field is shown to be superior to other common alkali chloride force fields in terms of reproducing the activity derivative, as a prerequisite for a realistic measure of ion-solute association underlying ion-specific phenomena (Hofmeister effects). For lithium and potassium, the ionic radii from cation-water oxygen pair correlation functions and hydration numbers are well reproduced. The force field developed will be useful for modeling physiological conditions and ion-specific phenomena for biomolecular systems.
Similar articles
-
Molecular simulation study on Hofmeister cations and the aqueous solubility of benzene.J Phys Chem B. 2014 May 22;118(20):5331-9. doi: 10.1021/jp5011154. Epub 2014 May 13. J Phys Chem B. 2014. PMID: 24792435
-
Rational design of ion force fields based on thermodynamic solvation properties.J Chem Phys. 2009 Mar 28;130(12):124507. doi: 10.1063/1.3081142. J Chem Phys. 2009. PMID: 19334851
-
Development of a ReaxFF reactive force field for aqueous chloride and copper chloride.J Phys Chem A. 2010 Mar 18;114(10):3556-68. doi: 10.1021/jp9090415. J Phys Chem A. 2010. PMID: 20180586
-
Coordination numbers of alkali metal ions in aqueous solutions.Biophys Chem. 2006 Dec 1;124(3):192-9. doi: 10.1016/j.bpc.2006.07.002. Epub 2006 Jul 27. Biophys Chem. 2006. PMID: 16875774 Review.
-
Potential energy surfaces fitted by artificial neural networks.J Phys Chem A. 2010 Mar 18;114(10):3371-83. doi: 10.1021/jp9105585. J Phys Chem A. 2010. PMID: 20131763 Review.
Cited by
-
A Kirkwood-Buff Derived Force Field for Aqueous Alkali Halides.J Chem Theory Comput. 2011 Apr 26;7(5):1369-1380. doi: 10.1021/ct100517z. J Chem Theory Comput. 2011. PMID: 21789033 Free PMC article.
-
Bridging Calorimetry and Simulation through Precise Calculations of Cucurbituril-Guest Binding Enthalpies.J Chem Theory Comput. 2014 Sep 9;10(9):4069-4078. doi: 10.1021/ct5004109. Epub 2014 Jul 23. J Chem Theory Comput. 2014. PMID: 25221445 Free PMC article.
-
Proteins maintain hydration at high [KCl] concentration regardless of content in acidic amino acids.Biophys J. 2021 Jul 6;120(13):2746-2762. doi: 10.1016/j.bpj.2021.05.015. Epub 2021 Jun 2. Biophys J. 2021. PMID: 34087206 Free PMC article.
-
Specific binding of chloride ions to lipid vesicles and implications at molecular scale.Biophys J. 2013 Feb 19;104(4):818-24. doi: 10.1016/j.bpj.2012.12.056. Biophys J. 2013. PMID: 23442960 Free PMC article.
-
Local Fluctuations in Solution: Theory and Applications.Adv Chem Phys. 2013;153:311-372. doi: 10.1002/9781118571767.ch4. Adv Chem Phys. 2013. PMID: 24683278 Free PMC article. No abstract available.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources