MR connectomics: Principles and challenges
- PMID: 20096730
- DOI: 10.1016/j.jneumeth.2010.01.014
MR connectomics: Principles and challenges
Abstract
MR connectomics is an emerging framework in neuro-science that combines diffusion MRI and whole brain tractography methodologies with the analytical tools of network science. In the present work we review the current methods enabling structural connectivity mapping with MRI and show how such data can be used to infer new information of both brain structure and function. We also list the technical challenges that should be addressed in the future to achieve high-resolution maps of structural connectivity. From the resulting tremendous amount of data that is going to be accumulated soon, we discuss what new challenges must be tackled in terms of methods for advanced network analysis and visualization, as well data organization and distribution. This new framework is well suited to investigate key questions on brain complexity and we try to foresee what fields will most benefit from these approaches.
Copyright © 2010 Elsevier B.V. All rights reserved.
Similar articles
-
The effect and reproducibility of different clinical DTI gradient sets on small world brain connectivity measures.Neuroimage. 2010 Jul 1;51(3):1106-16. doi: 10.1016/j.neuroimage.2010.03.011. Epub 2010 Mar 11. Neuroimage. 2010. PMID: 20226864
-
New approaches for exploring anatomical and functional connectivity in the human brain.Biol Psychiatry. 2004 Nov 1;56(9):613-9. doi: 10.1016/j.biopsych.2004.02.004. Biol Psychiatry. 2004. PMID: 15522243 Review.
-
[The visual pathways, from anatomical MRI to physiological with (f)MRI and tractography with diffusion tensor MRI (DTMRI)].Bull Acad Natl Med. 2004;188(7):1153-69; discussion 1170-2. Bull Acad Natl Med. 2004. PMID: 15787071 French.
-
Topological visualization of brain diffusion MRI data.IEEE Trans Vis Comput Graph. 2007 Nov-Dec;13(6):1496-503. doi: 10.1109/TVCG.2007.70602. IEEE Trans Vis Comput Graph. 2007. PMID: 17968102
-
Principles of diffusion tensor imaging and its applications to basic neuroscience research.Neuron. 2006 Sep 7;51(5):527-39. doi: 10.1016/j.neuron.2006.08.012. Neuron. 2006. PMID: 16950152 Review.
Cited by
-
Dynamic functional connectomics signatures for characterization and differentiation of PTSD patients.Hum Brain Mapp. 2014 Apr;35(4):1761-78. doi: 10.1002/hbm.22290. Epub 2013 May 14. Hum Brain Mapp. 2014. PMID: 23671011 Free PMC article.
-
Representing and retrieving video shots in human-centric brain imaging space.IEEE Trans Image Process. 2013 Jul;22(7):2723-36. doi: 10.1109/TIP.2013.2256919. Epub 2013 Apr 4. IEEE Trans Image Process. 2013. PMID: 23568507 Free PMC article.
-
The non-random brain: efficiency, economy, and complex dynamics.Front Comput Neurosci. 2011 Feb 8;5:5. doi: 10.3389/fncom.2011.00005. eCollection 2011. Front Comput Neurosci. 2011. PMID: 21369354 Free PMC article.
-
A linear model for characterization of synchronization frequencies of neural networks.Cogn Neurodyn. 2014 Feb;8(1):55-69. doi: 10.1007/s11571-013-9263-z. Epub 2013 Jul 23. Cogn Neurodyn. 2014. PMID: 24465286 Free PMC article.
-
Workflow and atlas system for brain-wide mapping of axonal connectivity in rat.PLoS One. 2011;6(8):e22669. doi: 10.1371/journal.pone.0022669. Epub 2011 Aug 1. PLoS One. 2011. PMID: 21829640 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources