Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jun;50(6):667-78.
doi: 10.1177/0091270009347872. Epub 2010 Jan 23.

Fentanyl transdermal absorption linked to pharmacokinetic characteristics in patients undergoing palliative care

Affiliations

Fentanyl transdermal absorption linked to pharmacokinetic characteristics in patients undergoing palliative care

Nadine F J Van Nimmen et al. J Clin Pharmacol. 2010 Jun.

Abstract

Delivery rates and plasma concentrations vary among patients treated with fentanyl patches. Absorption and urinary excretion characteristics of fentanyl were studied in patients undergoing palliative care. Almost 500 patches were analyzed for residual fentanyl content. Fentanyl and norfentanyl levels were determined in the urine of 50 patients. General and mixed effects linear regression models were established for the relationship between fentanyl dose rate and urinary excretion and to incorporate influencing factors. For different patch nominal dose strengths, wide but comparable variability in estimated dose rate and delivery efficiency was observed (coefficients of variation of 15% to 17%). Fentanyl delivery efficiency was 8.5% higher for patches of 25 microg/h as compared to 75 microg/h and, accordingly, 7.5% for patch application on the arm as compared to the leg. Urinary fentanyl and norfentanyl concentrations varied considerably. The general linear model revealed a positive effect of the calculated transdermal dose rate on urinary fentanyl levels, explaining 34% of the variability (P < .0001). In addition, gender (P = .04) and type of cancer pathology (P = .03) exerted significant effects on the linear model, explaining 40% and 64% of the variability, respectively. Delivery efficiency of fentanyl patches can vary substantially, possibly leading to either underdosing or overdosing.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources