Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr 15;340(2):355-68.
doi: 10.1016/j.ydbio.2010.01.019. Epub 2010 Jan 25.

Tooth morphogenesis and ameloblast differentiation are regulated by micro-RNAs

Affiliations
Free article

Tooth morphogenesis and ameloblast differentiation are regulated by micro-RNAs

Frederic Michon et al. Dev Biol. .
Free article

Abstract

Teeth form as appendages of the ectoderm and their morphogenesis is regulated by tissue interactions mediated by networks of conserved signal pathways. Micro-RNA (miRNA) pathway has emerged as important regulator of various aspects of embryonic development, but its function in odontogenesis has not been elucidated. We show that the expression of RNAi pathway effectors is dynamic during tooth morphogenesis and differentiation of dental cells. Based on microarray profiling we selected 8 miRNAs expressed during morphogenesis and 7 miRNAs in the incisor cervical loop containing the stem cell niche. These miRNAs were mainly expressed in the dental epithelium. Conditional deletion of Dicer-1 in the epithelium (Dcr(K14)(-)(/)(-)) resulted in rather mild but significant aberrations in tooth shape and enamel formation. The cusp patterns of the Dcr(K14)(-)(/)(-) molar crowns resembled the patterns of both ancestral muroid rodents and mouse mutants with modulated signal pathways. In the Dcr(K14)(-)(/)(-) incisors, longitudinal grooves formed on the labial surface and these were shown to result from ectopic budding of the progenitor epithelium in the cervical loop. In addition, ameloblast differentiation was impaired and resulted in deficient enamel formation in molars and incisors. To help the identification of candidate target genes of the selected tooth enriched miRNAs, we constructed a new ectodermal organ oriented database, miRTooth. The predicted targets of the selected miRNAs included several components of the main morphogenetic signal pathways regulating tooth development. Based on our findings we suggest that miRNAs modulate tooth morphogenesis largely by fine tuning conserved signaling networks and that miRNAs may have played important roles during tooth evolution.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources