Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Mar;11(2):148-53.
doi: 10.3109/15622970903447659.

Synergistic mechanisms in the modulation of the neurotrophin BDNF in the rat prefrontal cortex following acute agomelatine administration

Affiliations

Synergistic mechanisms in the modulation of the neurotrophin BDNF in the rat prefrontal cortex following acute agomelatine administration

Raffaella Molteni et al. World J Biol Psychiatry. 2010 Mar.

Abstract

Objectives: The aim of this study was to investigate the acute modulation of the neurotrophin Brain-derived neurotrophic factor (BDNF) by the novel antidepressant agomelatine and the relative contribution of its melatonergic and serotonergic receptor components.

Methods: BDNF mRNA levels were measured in rat hippocampus and prefrontal cortex after acute administration of agomelatine, melatonin or the 5-HT(2C) antagonist S32006.

Results: BDNF expression was significantly increased 16 h after acute agomelatine administration, an effect that follows a specific temporal profile, is limited to the prefrontal cortex and it is due to changes of specific neurotrophin transcripts. Moreover, the acute up-regulation of BDNF mRNA levels appears to be the result of a synergistic effect between the melatonergic properties of agomelatine as MT1/MT2 agonist and its serotonergic 5-HT(2C) antagonism, since either melatonin or the 5-HT(2C) antagonist S32006 does not mimic the effects of agomelatine.

Conclusions: These data provide evidence that acute agomelatine treatment modulates the expression of BDNF through a functional interaction between melatonergic MT1/MT2 and serotonergic 5-HT(2C) receptors, supporting the notion that intracellular events can be regulated via a synergistic activity of different neuromodulatory systems.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources