Derivation of human T lymphocytes from cord blood and peripheral blood with antiviral and antileukemic specificity from a single culture as protection against infection and relapse after stem cell transplantation
- PMID: 20110422
- PMCID: PMC2852368
- DOI: 10.1182/blood-2009-09-242263
Derivation of human T lymphocytes from cord blood and peripheral blood with antiviral and antileukemic specificity from a single culture as protection against infection and relapse after stem cell transplantation
Abstract
Viral infections and leukemic relapse account for the majority of treatment failures in patients with B-cell acute lymphoblastic leukemia (B-ALL) receiving allogeneic hematopoietic stem cell (HSC) or cord blood (CB) transplants. Adoptive transfer of virus-specific cytotoxic T lymphocytes (CTLs) provides protection against common viruses causing serious infections after HSC transplantation without concomitant graft-versus-host disease. We have now generated CTL lines from peripheral blood (PB) or CB units that recognize multiple common viruses and provide antileukemic activity by transgenic expression of a chimeric antigen receptor (CAR) targeting CD19 expressed on B-ALL. PB-derived CAR(+) CTLs produced interferon-gamma (IFNgamma) in response to cytomegalovirus-pp65, adenovirus-hexon, and Epstein-Barr virus pepmixes (from 205 +/- 104 to 1034 +/- 304 spot-forming cells [SFCs]/10(5) T cells) and lysed primary B-ALL blasts in (51)Cr-release assays (mean, 66% +/- 5% specific lysis; effector-target [E/T] ratio, 40:1) and the CD19(+) Raji cell line (mean, 78% +/- 17%) in contrast to nontransduced controls (8% +/- 8% and 3% +/- 2%). CB-derived CAR(+) CTLs showed similar antiviral and antitumor function and both PB and CB CAR(+) CTLs completely eliminated B-ALL blasts over 5 days of coculture. This approach may prove beneficial for patients with high-risk B-ALL who have recently received an HSC or CB transplant and are at risk of infection and relapse.
Figures






Similar articles
-
Expansion of T cells targeting multiple antigens of cytomegalovirus, Epstein-Barr virus and adenovirus to provide broad antiviral specificity after stem cell transplantation.Cytotherapy. 2011 Sep;13(8):976-86. doi: 10.3109/14653249.2011.575356. Epub 2011 May 4. Cytotherapy. 2011. PMID: 21539497 Free PMC article.
-
T-cell clones can be rendered specific for CD19: toward the selective augmentation of the graft-versus-B-lineage leukemia effect.Blood. 2003 Feb 15;101(4):1637-44. doi: 10.1182/blood-2002-07-1989. Epub 2002 Oct 10. Blood. 2003. PMID: 12393484
-
Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors.Nat Rev Clin Oncol. 2013 May;10(5):267-76. doi: 10.1038/nrclinonc.2013.46. Epub 2013 Apr 2. Nat Rev Clin Oncol. 2013. PMID: 23546520 Free PMC article. Review.
-
Generation of trispecific cytotoxic T cells recognizing cytomegalovirus, adenovirus, and Epstein-Barr virus: an approach for adoptive immunotherapy of multiple pathogens.J Immunother. 2007 Jul-Aug;30(5):544-56. doi: 10.1097/CJI.0b013e3180335b7a. J Immunother. 2007. PMID: 17589295
-
At the Bench: Chimeric antigen receptor (CAR) T cell therapy for the treatment of B cell malignancies.J Leukoc Biol. 2016 Dec;100(6):1255-1264. doi: 10.1189/jlb.5BT1215-556RR. Epub 2016 Oct 27. J Leukoc Biol. 2016. PMID: 27789538 Free PMC article. Review.
Cited by
-
Umbilical cord blood graft engineering: challenges and opportunities.Bone Marrow Transplant. 2015 Jun;50 Suppl 2:S55-62. doi: 10.1038/bmt.2015.97. Bone Marrow Transplant. 2015. PMID: 26039209 Review.
-
Efficient lentiviral transduction method to gene modify cord blood CD8+ T cells for cancer therapy applications.Mol Ther Methods Clin Dev. 2021 Mar 23;21:357-368. doi: 10.1016/j.omtm.2021.03.015. eCollection 2021 Jun 11. Mol Ther Methods Clin Dev. 2021. PMID: 33898633 Free PMC article.
-
Novel cord blood transplant therapies.Biol Blood Marrow Transplant. 2011 Jan;17(1 Suppl):S39-45. doi: 10.1016/j.bbmt.2010.10.004. Epub 2010 Oct 15. Biol Blood Marrow Transplant. 2011. PMID: 20951821 Free PMC article. Review. No abstract available.
-
CARs on track in the clinic.Mol Ther. 2011 Mar;19(3):432-8. doi: 10.1038/mt.2011.1. Mol Ther. 2011. PMID: 21358705 Free PMC article. No abstract available.
-
T-cell and natural killer cell therapies for hematologic malignancies after hematopoietic stem cell transplantation: enhancing the graft-versus-leukemia effect.Haematologica. 2015 Jun;100(6):709-19. doi: 10.3324/haematol.2014.113860. Haematologica. 2015. PMID: 26034113 Free PMC article. Review.
References
-
- Curtis RE, Travis LB, Rowlings PA, et al. Risk of lymphoproliferative disorders after bone marrow transplantation: a multi-institutional study. Blood. 1999;94(7):2208–2216. - PubMed
-
- Boeckh M, Nichols WG, Papanicolaou G, Rubin R, Wingard JR, Zaia J. Cytomegalovirus in hematopoietic stem cell transplant recipients: current status, known challenges, and future strategies. Biol Blood Marrow Transplant. 2003;9(9):543–558. - PubMed
-
- Feuchtinger T, Lucke J, Hamprecht K, et al. Detection of adenovirus-specific T cells in children with adenovirus infection after allogeneic stem cell transplantation. Br J Haematol. 2005;128(4):503–509. - PubMed
-
- Barker JN, Rocha V, Scaradavou A. Optimizing unrelated donor cord blood transplantation. Biol Blood Marrow Transplant. 2009;15(suppl 1):154–161. - PubMed
-
- Szabolcs P, Niedzwiecki D. Immune reconstitution in children after unrelated cord blood transplantation. Biol Blood Marrow Transplant. 2008;14(suppl 1):66–72. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical