Modern approaches for investigating epigenetic signaling pathways
- PMID: 20110548
- PMCID: PMC3774515
- DOI: 10.1152/japplphysiol.00007.2010
Modern approaches for investigating epigenetic signaling pathways
Abstract
Epigenetics is increasingly being recognized as a central component of physiological processes as diverse as obesity and circadian rhythms. Primarily acting through DNA methylation and histone posttranslational modifications, epigenetic pathways enable both short- and long-term transcriptional activation and silencing, independently of the underlying genetic sequence. To more quantitatively study the molecular basis of epigenetic regulation in physiological processes, the present review informs the latest techniques to identify and compare novel DNA methylation marks and combinatorial histone modifications across different experimental conditions, and to localize both DNA methylation and histone modifications over specific genomic regions.
Figures



References
-
- Allfrey VG, Pogo BG, Littau VC, Gershey EL, Mirsky AE. Histone acetylation in insect chromosomes. Science 159: 314–316, 1968 - PubMed
-
- Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K. High-resolution profiling of histone methylations in the human genome. Cell 129: 823–837, 2007 - PubMed
-
- Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, Huebert DJ, McMahon S, Karlsson EK, Kulbokas EJ, 3rd, Gingeras TR, Schreiber SL, Lander ES. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120: 169–181, 2005 - PubMed
-
- Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125: 315–326, 2006 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources