Value of using multiple proteases for large-scale mass spectrometry-based proteomics
- PMID: 20113005
- PMCID: PMC2833215
- DOI: 10.1021/pr900863u
Value of using multiple proteases for large-scale mass spectrometry-based proteomics
Abstract
Large-scale protein sequencing methods rely on enzymatic digestion of complex protein mixtures to generate a collection of peptides for mass spectrometric analysis. Here we examine the use of multiple proteases (trypsin, LysC, ArgC, AspN, and GluC) to improve both protein identification and characterization in the model organism Saccharomyces cerevisiae. Using a data-dependent, decision tree-based algorithm to tailor MS(2) fragmentation method to peptide precursor, we identified 92 095 unique peptides (609 665 total) mapping to 3908 proteins at a 1% false discovery rate (FDR). These results were a significant improvement upon data from a single protease digest (trypsin) - 27 822 unique peptides corresponding to 3313 proteins. The additional 595 protein identifications were mainly from those at low abundances (i.e., < 1000 copies/cell); sequence coverage for these proteins was likewise improved nearly 3-fold. We demonstrate that large portions of the proteome are simply inaccessible following digestion with a single protease and that multiple proteases, rather than technical replicates, provide a direct route to increase both protein identifications and proteome sequence coverage.
Figures





Similar articles
-
Six alternative proteases for mass spectrometry-based proteomics beyond trypsin.Nat Protoc. 2016 May;11(5):993-1006. doi: 10.1038/nprot.2016.057. Epub 2016 Apr 28. Nat Protoc. 2016. PMID: 27123950
-
Proteomics beyond trypsin.FEBS J. 2015 Jul;282(14):2612-26. doi: 10.1111/febs.13287. Epub 2015 Apr 14. FEBS J. 2015. PMID: 25823410 Review.
-
Deglycosylation systematically improves N-glycoprotein identification in liquid chromatography-tandem mass spectrometry proteomics for analysis of cell wall stress responses in Saccharomyces cerevisiae lacking Alg3p.J Chromatogr B Analyt Technol Biomed Life Sci. 2013 Apr 1;923-924:16-21. doi: 10.1016/j.jchromb.2013.01.026. Epub 2013 Feb 4. J Chromatogr B Analyt Technol Biomed Life Sci. 2013. PMID: 23454304
-
The Negative Mode Proteome with Activated Ion Negative Electron Transfer Dissociation (AI-NETD).Mol Cell Proteomics. 2015 Oct;14(10):2644-60. doi: 10.1074/mcp.M115.049726. Epub 2015 Jul 20. Mol Cell Proteomics. 2015. PMID: 26193884 Free PMC article.
-
Sample preparation by in-gel digestion for mass spectrometry-based proteomics.Anal Bioanal Chem. 2007 Oct;389(4):991-1002. doi: 10.1007/s00216-007-1451-4. Epub 2007 Jul 17. Anal Bioanal Chem. 2007. PMID: 17639354 Review.
Cited by
-
A calibration routine for efficient ETD in large-scale proteomics.J Am Soc Mass Spectrom. 2015 Nov;26(11):1848-57. doi: 10.1007/s13361-015-1183-1. Epub 2015 Jun 26. J Am Soc Mass Spectrom. 2015. PMID: 26111518 Free PMC article.
-
Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins.Mol Cell Proteomics. 2012 Mar;11(3):M111.014050. doi: 10.1074/mcp.M111.014050. Epub 2012 Jan 25. Mol Cell Proteomics. 2012. PMID: 22278370 Free PMC article.
-
Sequencing-grade de novo analysis of MS/MS triplets (CID/HCD/ETD) from overlapping peptides.J Proteome Res. 2013 Jun 7;12(6):2846-57. doi: 10.1021/pr400173d. Epub 2013 May 30. J Proteome Res. 2013. PMID: 23679345 Free PMC article.
-
Spritz: A Proteogenomic Database Engine.J Proteome Res. 2021 Apr 2;20(4):1826-1834. doi: 10.1021/acs.jproteome.0c00407. Epub 2020 Oct 7. J Proteome Res. 2021. PMID: 32967423 Free PMC article.
-
A Multiple Protease Strategy to Optimise the Shotgun Proteomics of Mature Medicinal Cannabis Buds.Int J Mol Sci. 2019 Nov 11;20(22):5630. doi: 10.3390/ijms20225630. Int J Mol Sci. 2019. PMID: 31717952 Free PMC article.
References
-
- Washburn MP, Wolters D, Yates JR. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotech. 2001;19(3):242–247. - PubMed
-
- de Godoy LMF, Olsen JV, Cox J, Nielsen ML, Hubner NC, Frohlich F, Walther TC, Mann M. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature. 2008;455(7217):1251–1254. - PubMed
-
- Peng JM, Elias JE, Thoreen CC, Licklider LJ, Gygi SP. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: The yeast proteome. Journal of Proteome Research. 2003;2(1):43–50. - PubMed
-
- Dongre AR, Jones JL, Somogyi A, Wysocki VH. Influence of peptide composition, gas-phase basicity, and chemical modification on fragmentation efficiency: Evidence for the mobile proton model. Journal of the American Chemical Society. 1996;118(35):8365–8374.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases