Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jan 28;132(4):044906.
doi: 10.1063/1.3290955.

A Monte Carlo algorithm for computing spin echo small angle neutron scattering correlation functions in real space: Hard sphere liquids

Affiliations

A Monte Carlo algorithm for computing spin echo small angle neutron scattering correlation functions in real space: Hard sphere liquids

Chwen-Yang Shew et al. J Chem Phys. .

Abstract

A Monte Carlo algorithm is developed to compute the autocorrelation function of liquids and the corresponding spatial correlation function from spin echo small angle neutron scattering (SESANS) spectra. The accuracy of the simulation algorithm is tested with isolated hard spheres and single dumbbells consisting of two hard spheres separated by a given distance. The simulation results accurately reproduce the exact expressions of these two models. To further test the algorithm for many-body systems, two liquid models are considered including hard sphere fluids and hard spheres with an attractive tail. The many-particle Monte Carlo simulation is carried out to obtain the ensemble average of these correlation functions. Meanwhile, the Percus-Yevic (PY) integral equation theory is resorted to compute the autocorrelation function and SESANS spatial correlation function for a density that the PY theory is reasonably applicable. The agreement between simulation and theory indicates that the algorithm is quite robust and can be extended to more complex fluids in the future. Furthermore, we find that the SESANS spatial correlation function is highly sensitive to the interaction potential between particles, which may serve as a useful tool to explore particle interactions in a liquid.

PubMed Disclaimer

Similar articles

LinkOut - more resources