Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Mar;56(4):634-41.
doi: 10.1016/j.neuint.2010.01.009. Epub 2010 Jan 29.

Neuroprotective actions of aminoguanidine involve reduced the activation of calpain and caspase-3 in a rat model of stroke

Affiliations

Neuroprotective actions of aminoguanidine involve reduced the activation of calpain and caspase-3 in a rat model of stroke

Ming Sun et al. Neurochem Int. 2010 Mar.

Abstract

Two intracellular cysteine proteases (calpains and caspases) and inducible nitric oxide synthase (iNOS) participate in the ischemic brain injury. In vitro nitric oxide (NO) regulates calpain and caspase-3 activation. The present study investigated whether aminoguanidine (AG), an iNOS inhibitor, protected brain against experimental stroke through inhibiting calpain and caspase-3 activation. Rats received 1h ischemia by intraluminal filament, then, reperfused for 23 h (R 23 h). AG (100 mg/kg) was administered intraperitoneally 5 min before ischemia. Our data showed that treatment with AG markedly improved neurological deficit, reduced brain swelling, decreased infarct volume, and attenuated the necrotic cell death in ischemic penumbra and core, and apoptotic cell death in penumbra at R 23 h. Enzymatic studies demonstrated the significant inhibition of the activities of mu- and m-calpain and caspase-3, and Western blot analysis revealed marked increases in the levels of MAP-2 and spectrin in penumbra and core in AG-treated rats versus vehicle-treated rats. AG also significantly enhanced the calpastatin levels in core, although it had no significant effects on that in penumbra. These data demonstrate that inhibiting calpain and caspase-3 activation is one mechanism of AG against experimental stroke, suggesting that NO produced by iNOS may be involved in calpain- and caspase-3-mediated ischemic cell death, at least in part.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms