Protection of podocytes from hyperhomocysteinemia-induced injury by deletion of the gp91phox gene
- PMID: 20116427
- PMCID: PMC2839045
- DOI: 10.1016/j.freeradbiomed.2010.01.029
Protection of podocytes from hyperhomocysteinemia-induced injury by deletion of the gp91phox gene
Abstract
In this study, mice lacking the gp91(phox) gene were used to address the role of NADPH oxidase in hyperhomocysteinemia-induced podocyte injury. It was found that a folate-free diet increased plasma homocysteine levels, but failed to increase O(2)(-) production in the glomeruli from gp91(phox) gene knockout (gp91(-/-)) mice, compared with wild-type (gp91(+/+)) mice. Proteinuria and glomerular damage index (GDI) were significantly lower, whereas the glomerular filtration rate (GFR) was higher in gp91(-/-) than in gp91(+/+) mice when they were on the folate-free diet (urine albumin excretion, 21.23+/-1.88 vs 32.86+/-4.03 microg/24 h; GDI, 1.17+/-0.18 vs 2.59+/-0.49; and GFR, 53.01+/-4.69 vs 40.98+/-1.44 microl/min). Hyperhomocysteinemia-induced decrease in nephrin expression and increase in desmin expression in gp91(+/+) mice were not observed in gp91(-/-) mice. Morphologically, foot process effacement and podocyte loss due to hyperhomocysteinemia were significantly attenuated in gp91(-/-) mice. In in vitro studies of podocytes, homocysteine was found to increase gp91(phox) expression and O2(*)(-) generation, which was substantially inhibited by gp91(phox) siRNA. Functionally, homocysteine-induced decrease in vascular endothelial growth factor-A production was abolished by gp91(phox) siRNA or diphenyleneiodonium, a NADPH oxidase inhibitor. These results suggest that the functional integrity of NADPH oxidase is essential for hyperhomocysteinemia-induced podocyte injury and glomerulosclerosis.
Copyright 2010 Elsevier Inc. All rights reserved.
Figures








References
-
- Robinson K, Gupta A, Dennis V, Arheart K, Chaudhary D, Green R, Vigo P, Mayer EL, Selhub J, Kutner M, Jacobsen DW. Hyperhomocysteinemia confers an independent increased risk of atherosclerosis in end-stage renal disease and is closely linked to plasma folate and pyridoxine concentrations. Circulation. 1996;94:2743–2748. - PubMed
-
- Moustapha A, Gupta A, Robinson K, Arheart K, Jacobsen DW, Schreiber MJ, Dennis VW. Prevalence and determinants of hyperhomocysteinemia in hemodialysis and peritoneal dialysis. Kidney Int. 1999;55:1470–1475. - PubMed
-
- Ducloux D, Motte G, Challier B, Gibey R, Chalopin JM. Serum total homocysteine and cardiovascular disease occurrence in chronic, stable renal transplant recipients: a prospective study. J Am Soc Nephrol. 2000;11:134–137. - PubMed
-
- Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res. 1994;74:1141–1148. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources