Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2010 Jul;89(7):701-13.
doi: 10.1007/s00277-009-0896-2. Epub 2010 Jan 30.

Chemotherapy-induced mesenchymal stem cell damage in patients with hematological malignancy

Affiliations
Clinical Trial

Chemotherapy-induced mesenchymal stem cell damage in patients with hematological malignancy

Kevin Kemp et al. Ann Hematol. 2010 Jul.

Abstract

Hematopoietic recovery after high-dose chemotherapy (HDC) in the treatment of hematological diseases may be slow and/or incomplete. This is generally attributed to progressive hematopoietic stem cell failure, although defective hematopoiesis may be in part due to poor stromal function. Chemotherapy is known to damage mature bone marrow stromal cells in vitro, but the extent to which marrow mesenchymal stem cells (MSCs) are damaged by HDC in vivo is largely unknown. To address this question, the phenotype and functional properties of marrow MSCs derived from untreated and chemotherapeutically treated patients with hematological malignancy were compared. This study demonstrates a significant reduction in MSC expansion and MSC CD44 expression by MSCs derived from patients receiving HDC regimens, thus implicating potential disadvantages in the use of autologous MSCs in chemotherapeutically pretreated patients for future therapeutic strategies. The clinical importance of these HDC-induced defects we have observed could be determined through prospective randomized trials of the effects of MSC cotransplantation on hematopoietic recovery in the setting of HDC with and without hematopoietic stem cell rescue.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources