Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May;51(4):304-14.
doi: 10.1002/em.20546.

DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells

Affiliations

DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells

Matias S Attene-Ramos et al. Environ Mol Mutagen. 2010 May.

Abstract

Hydrogen sulfide (H(2)S), a metabolic end product of sulfate-reducing bacteria, represents a genotoxic insult to the colonic epithelium, which may also be linked with chronic disorders such as ulcerative colitis and colorectal cancer. This study defined the early (30 min) and late (4 hr) response of nontransformed human intestinal epithelial cells (FHs 74 Int) to H(2)S. The genotoxicity of H(2)S was measured using the single-cell gel electrophoresis (comet) assay. Changes in gene expression were analyzed after exposure to a genotoxic, but not cytotoxic, concentration of H(2)S (500 muM H(2)S) using pathway-specific quantitative RT-PCR gene arrays. H(2)S was genotoxic in a concentration range from 250 to 2,000 microM, which is similar to concentrations found in the large intestine. Significant changes in gene expression were predominantly observed at 4 hr, with the greatest responses by PTGS2 (COX-2; 7.92-fold upregulated) and WNT2 (7.08-fold downregulated). COX-2 was the only gene upregulated at both 30 min and 4 hr. Overall, the study demonstrates that H(2)S modulates the expression of genes involved in cell-cycle progression and triggers both inflammatory and DNA repair responses. This study confirms the genotoxic properties of H(2)S in nontransformed human intestinal epithelial cells and identifies functional pathways by which this bacterial metabolite may perturb cellular homeostasis and contribute to the onset of chronic intestinal disorders.

PubMed Disclaimer

Similar articles

Cited by

Publication types