Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Feb;24(1):10-7.
doi: 10.1111/j.1523-1739.2009.01408.x.

Understanding recent climate change

Affiliations

Understanding recent climate change

Mark C Serreze. Conserv Biol. 2010 Feb.

Abstract

The Earth's atmosphere has a natural greenhouse effect, without which the global mean surface temperature would be about 33 degrees C lower and life would not be possible. Human activities have increased atmospheric concentrations of carbon dioxide, methane, and other gases in trace amounts. This has enhanced the greenhouse effect, resulting in surface warming. Were it not for the partly offsetting effects of increased aerosol concentrations, the increase in global mean surface temperature over the past 100 years would be larger than observed. Continued surface warming through the 21st century is inevitable and will likely have widespread ecological impacts. The magnitude and rate of warming for the global average will be largely dictated by the strength and direction of climate feedbacks, thermal inertia of the oceans, the rate of greenhouse gas emissions, and aerosol concentrations. Because of regional expressions of climate feedbacks, changes in atmospheric circulation, and a suite of other factors, the magnitude and rate of warming and changes in other key climate elements, such as precipitation, will not be uniform across the planet. For example, due to loss of its floating sea-ice cover, the Arctic will warm the most.

PubMed Disclaimer

Similar articles

  • Chapter 1. Impacts of the oceans on climate change.
    Reid PC, Fischer AC, Lewis-Brown E, Meredith MP, Sparrow M, Andersson AJ, Antia A, Bates NR, Bathmann U, Beaugrand G, Brix H, Dye S, Edwards M, Furevik T, Gangstø R, Hátún H, Hopcroft RR, Kendall M, Kasten S, Keeling R, Le Quéré C, Mackenzie FT, Malin G, Mauritzen C, Olafsson J, Paull C, Rignot E, Shimada K, Vogt M, Wallace C, Wang Z, Washington R. Reid PC, et al. Adv Mar Biol. 2009;56:1-150. doi: 10.1016/S0065-2881(09)56001-4. Adv Mar Biol. 2009. PMID: 19895974
  • Changes in biologically-active ultraviolet radiation reaching the Earth's surface.
    McKenzie RL, Aucamp PJ, Bais AF, Björn LO, Ilyas M. McKenzie RL, et al. Photochem Photobiol Sci. 2007 Mar;6(3):218-31. doi: 10.1039/b700017k. Epub 2007 Feb 15. Photochem Photobiol Sci. 2007. PMID: 17344959
  • Preparing for climate change.
    Holdgate M. Holdgate M. Earthwatch. 1989;(35):8. Earthwatch. 1989. PMID: 12285901
  • The influence of terrestrial ecosystems on climate.
    Meir P, Cox P, Grace J. Meir P, et al. Trends Ecol Evol. 2006 May;21(5):254-60. doi: 10.1016/j.tree.2006.03.005. Epub 2006 Mar 29. Trends Ecol Evol. 2006. PMID: 16697911 Review.
  • The origin of climate changes.
    Delecluse P. Delecluse P. Rev Sci Tech. 2008 Aug;27(2):309-17. Rev Sci Tech. 2008. PMID: 18819661 Review.

Cited by

Publication types

LinkOut - more resources