Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Feb;118(2):222-8.
doi: 10.1289/ehp.0901252.

Rate of decline in serum PFOA concentrations after granular activated carbon filtration at two public water systems in Ohio and West Virginia

Affiliations

Rate of decline in serum PFOA concentrations after granular activated carbon filtration at two public water systems in Ohio and West Virginia

Scott M Bartell et al. Environ Health Perspect. 2010 Feb.

Abstract

Background: Drinking water in multiple water districts in the Mid-Ohio Valley has been contaminated with perfluorooctanoic acid (PFOA), which was released by a nearby DuPont chemical plant. Two highly contaminated water districts began granular activated carbon filtration in 2007.

Objectives: To determine the rate of decline in serum PFOA, and its corresponding half-life, during the first year after filtration.

Methods: Up to six blood samples were collected from each of 200 participants from May 2007 until August 2008. The primary source of drinking water varied over time for some participants; our analyses were grouped according to water source at baseline in May-June 2007.

Results: For Lubeck Public Service District customers, the average decrease in serum PFOA concentrations between May-June 2007 and May-August 2008 was 32 ng/mL (26%) for those primarily consuming public water at home (n = 130), and 16 ng/mL (28%) for those primarily consuming bottled water at home (n = 17). For Little Hocking Water Association customers, the average decrease in serum PFOA concentrations between November-December 2007 and May-June 2008 was 39 ng/mL (11%) for consumers of public water (n = 39) and 28 ng/mL (20%) for consumers of bottled water (n = 11). The covariate-adjusted average rate of decrease in serum PFOA concentration after water filtration was 26% per year (95% confidence interval, 2528% per year).

Conclusions: The observed data are consistent with first-order elimination and a median serum PFOA half-life of 2.3 years. Ongoing follow-up will lead to improved half-life estimation.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Box-and-whisker plots of serum PFOA concentrations at baseline and approximately 1, 2, 3, 6, and 12 months after baseline for participants with residential water service from Lubeck Public Service District, stratified by primary drinking water source at baseline (A, public water; B, bottled water). Boxes mark the 25th, 50th, and 75th percentiles of measured serum PFOA for each round of blood samples, and whiskers extend to the lowest and highest measured concentrations. The vertical dashed line indicates the day on which water filtration began, relative to the median day of baseline blood sample collection. Serum PFOA concentrations are plotted on a log scale.
Figure 2
Figure 2
Box-and-whisker plots of serum PFOA concentrations at baseline and approximately 1, 2, 3, 6, and 12 months after baseline for participants with residential water service from Little Hocking Water Association, stratified by primary drinking water source at baseline (A, public water; B, bottled water). Boxes mark the 25th, 50th, and 75th percentile of measured serum PFOA for each round of blood samples, and whiskers extend to the lowest and highest measured concentrations. The vertical dashed line indicates the day on which water filtration began, relative to the median day of baseline blood sample collection. Serum PFOA concentrations are plotted on a log scale.

References

    1. Anderson ME, Clewell HJ, Tan YM, Butenhoff JL, Olsen GW. Pharmacokinetic modeling of saturable, renal resorption of perfluoroalkylacids in monkeys—probing the determinants of long plasma half-lives. Toxicology. 2006;227(1–2):156–164. - PubMed
    1. Fletcher T, Savitz D, Steenland K. C8 Science Panel. 2009. [[accessed 16 October 2009]]. Available: http://www.c8sciencepanel.org.
    1. Calafat AM, Wong L-Y, Kuklenyik Z, Reidy JA, Needham LL. Polyfluoroalkyl chemicals in the U.S. population: data from the National Health and Nutrition Examination Survey (NHANES) 2003–2004 and comparisons with NHANES 1999–2000. Environ Health Perspect. 2007;115:1596–1602. - PMC - PubMed
    1. Caudill SP, Schleicher RL, Pirkle JL. Multi-rule quality control for the age-related eye disease study. Stat Med. 2008;27:4094–4106. - PubMed
    1. Costa G, Sartori S, Consonni D. Thirty years of medical surveillance in perfluooctanoic acid production workers. J Occup Environ Med. 2009;51(3):364–372. - PubMed

Publication types