Autophagy in unicellular eukaryotes
- PMID: 20124347
- PMCID: PMC2817228
- DOI: 10.1098/rstb.2009.0237
Autophagy in unicellular eukaryotes
Abstract
Cells need a constant supply of precursors to enable the production of macromolecules to sustain growth and survival. Unlike metazoans, unicellular eukaryotes depend exclusively on the extracellular medium for this supply. When environmental nutrients become depleted, existing cytoplasmic components will be catabolized by (macro)autophagy in order to re-use building blocks and to support ATP production. In many cases, autophagy takes care of cellular housekeeping to sustain cellular viability. Autophagy encompasses a multitude of related and often highly specific processes that are implicated in both biogenetic and catabolic processes. Recent data indicate that in some unicellular eukaryotes that undergo profound differentiation during their life cycle (e.g. kinetoplastid parasites and amoebes), autophagy is essential for the developmental change that allows the cell to adapt to a new host or form spores. This review summarizes the knowledge on the molecular mechanisms of autophagy as well as the cytoplasm-to-vacuole-targeting pathway, pexophagy, mitophagy, ER-phagy, ribophagy and piecemeal microautophagy of the nucleus, all highly selective forms of autophagy that have first been uncovered in yeast species. Additionally, a detailed analysis will be presented on the state of knowledge on autophagy in non-yeast unicellular eukaryotes with emphasis on the role of this process in differentiation.
Figures


Similar articles
-
Vac8 Controls Vacuolar Membrane Dynamics during Different Autophagy Pathways in Saccharomyces cerevisiae.Cells. 2019 Jun 30;8(7):661. doi: 10.3390/cells8070661. Cells. 2019. PMID: 31262095 Free PMC article.
-
ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery.J Cell Sci. 2014 Sep 15;127(Pt 18):4078-88. doi: 10.1242/jcs.154716. Epub 2014 Jul 22. J Cell Sci. 2014. PMID: 25052096 Free PMC article.
-
Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris.Mol Biol Cell. 2001 Dec;12(12):3821-38. doi: 10.1091/mbc.12.12.3821. Mol Biol Cell. 2001. PMID: 11739783 Free PMC article.
-
Reticulophagy and nucleophagy: New findings and unsolved issues.Autophagy. 2015;11(12):2377-8. doi: 10.1080/15548627.2015.1106665. Autophagy. 2015. PMID: 26566146 Free PMC article. Review.
-
Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells.Annu Rev Biochem. 2000;69:303-42. doi: 10.1146/annurev.biochem.69.1.303. Annu Rev Biochem. 2000. PMID: 10966461 Review.
Cited by
-
The many faces of mitochondrial autophagy: making sense of contrasting observations in recent research.Int J Cell Biol. 2012;2012:431684. doi: 10.1155/2012/431684. Epub 2012 Apr 8. Int J Cell Biol. 2012. PMID: 22550491 Free PMC article.
-
Rottlerin-mediated inhibition of Toxoplasma gondii growth in BeWo trophoblast-like cells.Sci Rep. 2017 Apr 28;7(1):1279. doi: 10.1038/s41598-017-01525-6. Sci Rep. 2017. PMID: 28455500 Free PMC article.
-
Rewiring and regulation of cross-compartmentalized metabolism in protists.Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):831-45. doi: 10.1098/rstb.2009.0259. Philos Trans R Soc Lond B Biol Sci. 2010. PMID: 20124348 Free PMC article. Review.
-
Dual Role of Autophagy in Diseases of the Central Nervous System.Front Cell Neurosci. 2019 May 28;13:196. doi: 10.3389/fncel.2019.00196. eCollection 2019. Front Cell Neurosci. 2019. PMID: 31191249 Free PMC article. Review.
-
Cell death pathways in pathogenic trypanosomatids: lessons of (over)kill.Cell Death Dis. 2019 Jan 30;10(2):93. doi: 10.1038/s41419-019-1370-2. Cell Death Dis. 2019. PMID: 30700697 Free PMC article. Review.
References
-
- Alvarez V. E., Kosec G., Sant'Anna C., Turk V., Cazzulo J. J., Turk B.2008Autophagy is involved in nutritional stress response and differentiation in Trypanosoma cruzi. J. Biol. Chem. 283, 3454–3464 (doi:10.1074/jbc.M708474200) - DOI - PubMed
-
- Barrett M. P., Burchmore R. J., Stich A., Lazzari J. O., Frasch A. C., Cazzulo J. J., Krishna S.2003The trypanosomiases. The Lancet 362, 1469–1480 (doi:10.1016/S0140-6736(03)14694-6) - DOI - PubMed
-
- Bates P. A., Rogers M. E.2004New insights into the developmental biology and transmission mechanisms of Leishmania. Curr. Mol. Med. 4, 601–609 (doi:10.2174/1566524043360285) - DOI - PubMed
-
- Baxter B. K., Abeliovich H., Zhang X., Stirling A. G., Burlingame A. L., Goldfarb D. S.2005Atg19p ubiquitination and the cytoplasm to vacuole trafficking pathway in yeast. J. Biol. Chem. 280, 39 067–39 076 (doi:10.1074/jbc.M508064200) - DOI - PubMed
-
- Bellu A. R., Komori M., van der Klei I. J., Kiel J. A. K. W., Veenhuis M.2001Peroxisome biogenesis and selective degradation converge at Pex14p. J. Biol. Chem. 276, 44 570–44 574 (doi:10.1074/jbc.M107599200) - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases