Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Mar;112(3):567-75.
doi: 10.1097/ALN.0b013e3181cf9138.

Bumetanide alleviates epileptogenic and neurotoxic effects of sevoflurane in neonatal rat brain

Affiliations

Bumetanide alleviates epileptogenic and neurotoxic effects of sevoflurane in neonatal rat brain

David A Edwards et al. Anesthesiology. 2010 Mar.

Abstract

Background: We tested the hypothesis that in newborn rats, sevoflurane may cause seizures, neurotoxicity, and impairment in synaptic plasticity-effects that may be diminished by the Na-K-2Cl cotransporter 1 inhibitor, bumetanide.

Methods: Electroencephalography, activated caspase-3, and hippocampal long-term potentiation were measured in rats exposed to 2.1% sevoflurane for 0.5-6 h at postnatal days 4-17 (P4-P17).

Results: Arterial blood gas samples drawn at a sevoflurane concentration of 2.1% showed no evidence of either hypoxia or hypoventilation in spontaneously breathing rats. Higher doses of sevoflurane (e.g., 2.9%) caused respiratory depression. During anesthesia maintenance, the electroencephalography exhibited distinctive episodes of epileptic seizures in 40% of P4-P8 rats. Such seizure-like activity was not detected during anesthesia maintenance in P10-P17 rats. Emergence from 3 h of anesthesia with sevoflurane resulted in tonic/clonic seizures in some P10-P17 rats but not in P4-P8 rats. Bumetanide (5 micromol/kg, intraperitoneally) significantly decreased seizures in P4-P9 rats but did not affect the emergence seizures in P10-P17 rats. Anesthesia of P4 rats with sevoflurane for 6 h caused a significant increase in activated caspase-3 and impairment of long-term potentiation induction measured at 1 and 14-17 days after exposure to sevoflurane, respectively. Pretreatment of P4 rats with bumetanide nearly abolished the increase in activated caspase-3 but did not alleviate impairment of long-term potentiation.

Conclusion: These results support the possibility that excitatory output of sevoflurane-potentiated gamma-aminobutyric acid type A/glycine systems may contribute to epileptogenic and neurotoxic effects in early postnatal rats.

PubMed Disclaimer

Comment in

Publication types

MeSH terms