A potential role for muscle in glucose homeostasis: in vivo kinetic studies in glycogen storage disease type 1a and fructose-1,6-bisphosphatase deficiency
- PMID: 20127282
- PMCID: PMC2828550
- DOI: 10.1007/s10545-009-9030-9
A potential role for muscle in glucose homeostasis: in vivo kinetic studies in glycogen storage disease type 1a and fructose-1,6-bisphosphatase deficiency
Abstract
Background: A potential role for muscle in glucose homeostasis was recently suggested based on characterization of extrahepatic and extrarenal glucose-6-phosphatase (glucose-6-phosphatase-beta). To study the role of extrahepatic tissue in glucose homeostasis during fasting glucose kinetics were studied in two patients with a deficient hepatic and renal glycogenolysis and/or gluconeogenesis.
Design: Endogenous glucose production (EGP), glycogenolysis (GGL), and gluconeogenesis (GNG) were quantified with stable isotopes in a patient with glycogen storage disease type 1a (GSD-1a) and a patient with fructose-1,6-bisphosphatase (FBPase) deficiency. The [6,6-(2)H(2)]glucose dilution method in combination with the deuterated water method was used during individualized fasting tests.
Results: Both patients became hypoglycemic after 2.5 and 14.5 h fasting, respectively. At that time, the patient with GSD-1a had EGP 3.84 micromol/kg per min (30% of normal EGP after an overnight fast), GGL 3.09 micromol/kg per min, and GNG 0.75 micromol/kg per min. The patient with FBPase deficiency had EGP 8.53 micromol/kg per min (62% of normal EGP after an overnight fast), GGL 6.89 micromol/kg per min GGL, and GNG 1.64 micromol/kg per min.
Conclusion: EGP was severely hampered in both patients, resulting in hypoglycemia. However, despite defective hepatic and renal GNG in both disorders and defective hepatic GGL in GSD-1a, both patients were still able to produce glucose via both pathways. As all necessary enzymes of these pathways have now been functionally detected in muscle, a contribution of muscle to EGP during fasting via both GGL as well as GNG is suggested.
Figures
References
-
- Ackermans MT, Pereira Arias AM, Bisschop PH, Endert E, Sauerwein HP, Romijn JA. The quantification of gluconeogenesis in healthy men by 2H2O and [2-13C]glycerol yields different results: rates of gluconeogenesis in healthy men measured with 2H2O are higher than those measured with [2-13C]glycerol. J Clin Endocrinol Metab. 2001;86:2220–2226. doi: 10.1210/jc.86.5.2220. - DOI - PubMed
-
- Bock G, Schumann WC, Basu R, et al. Evidence that processes other than gluconeogenesis may influence the ratio of deuterium on the fifth and third carbons of glucose: implications for the use of 2H2O to measure gluconeogenesis in humans. Diabetes. 2008;57:50–55. doi: 10.2337/db07-0694. - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
