Approaches to increasing surface stress for improving signal-to-noise ratio of microcantilever sensors
- PMID: 20128621
- PMCID: PMC2836585
- DOI: 10.1021/ac901955d
Approaches to increasing surface stress for improving signal-to-noise ratio of microcantilever sensors
Abstract
Microcantilever sensor technology has been steadily growing for the last 15 years. While we have gained a great amount of knowledge in microcantilever bending due to surface stress changes, which is a unique property of microcantilever sensors, we are still in the early stages of understanding the fundamental surface chemistries of surface-stress-based microcantilever sensors. In general, increasing surface stress, which is caused by interactions on the microcantilever surfaces, would improve the S/N ratio and subsequently the sensitivity and reliability of microcantilever sensors. In this review, we will summarize (A) the conditions under which a large surface stress can readily be attained and (B) the strategies to increase surface stress in case a large surface stress cannot readily be reached. We will also discuss our perspectives on microcantilever sensors based on surface stress changes.
Figures








Similar articles
-
Microcantilever biosensors.Methods. 2005 Sep;37(1):57-64. doi: 10.1016/j.ymeth.2005.05.011. Epub 2005 Sep 30. Methods. 2005. PMID: 16199177 Review.
-
Effect of surface conjugation chemistry on the sensitivity of microcantilever sensors.Scanning. 2007 Nov-Dec;29(6):245-8. doi: 10.1002/sca.20076. Scanning. 2007. PMID: 18076074
-
A Numerical Model of a Perforated Microcantilever Covered with Cardiomyocytes to Improve the Performance of the Microcantilever Sensor.Materials (Basel). 2020 Dec 28;14(1):95. doi: 10.3390/ma14010095. Materials (Basel). 2020. PMID: 33379322 Free PMC article.
-
Optical Fiber Probe Microcantilever Sensor Based on Fabry-Perot Interferometer.Sensors (Basel). 2022 Aug 1;22(15):5748. doi: 10.3390/s22155748. Sensors (Basel). 2022. PMID: 35957304 Free PMC article. Review.
-
Silicon Microcantilever Sensors to Detect the Reversible Conformational Change of a Molecular Switch, Spiropyan.Sensors (Basel). 2020 Feb 6;20(3):854. doi: 10.3390/s20030854. Sensors (Basel). 2020. PMID: 32041095 Free PMC article.
Cited by
-
Conformational-switch biosensors as novel tools to support continuous, real-time molecular monitoring in lab-on-a-chip devices.Lab Chip. 2023 Mar 1;23(5):1339-1348. doi: 10.1039/d2lc00716a. Lab Chip. 2023. PMID: 36655710 Free PMC article. Review.
-
Electrostatic excitation for the force amplification of microcantilever sensors.Sensors (Basel). 2011;11(11):10129-42. doi: 10.3390/s111110129. Epub 2011 Oct 25. Sensors (Basel). 2011. PMID: 22346633 Free PMC article.
-
Microcantilevers modified by specific peptide for selective detection of trimethylamine.Biosens Bioelectron. 2011 Dec 15;30(1):140-4. doi: 10.1016/j.bios.2011.09.001. Epub 2011 Sep 16. Biosens Bioelectron. 2011. PMID: 22000756 Free PMC article.
References
-
- Gimzewski JK, Gerber C, Meyer E, Schlittler RR. Chem Phys Lett. 1994;217:589–594.
-
- Chen GY, Warmack RJ, Thundat T, Allison DP, Huang A. Rev Sci Instrum. 1994;65:2532–2537.
-
- Thundat T, Warmack RJ, Chen GY, Allison DP. Appl Phys Lett. 1994;64:2894–2896.
-
- Kolesar ES, Allen PB, Howard JT, Wilken JM, Boydston N. Thin Solid Films. 1999;355-356:295–302.
-
- Thundat T, Sharp SL, Fisher WG, Warmack RJ, Wachter EA. Appl Phys Lett. 1995;66:1563–1565.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources