Enhanced heavy metal phytoextraction by Echinochloa crus-galli using root exudates
- PMID: 20129081
- DOI: 10.1016/j.jbiosc.2009.06.018
Enhanced heavy metal phytoextraction by Echinochloa crus-galli using root exudates
Abstract
Heavy metal uptake and growth by Echinochloa crus-galli were investigated to determine if the use of root exudates enhanced phytoextraction. E. crus-galli were planted in soils contaminated with 600 mg kg(-1) Pb, 40 mg kg(-1) Cd and 100 mg kg(-1) Cu. E. crus-galli were then cultivated with and without root exudates from Belamcanda chinensis for 4 weeks. The growth of E. crus-galli in metal-contaminated soils that contained root exudates showed increased roots and shoots when compared to E. crus-galli grown without root exudates (p<0.05). In addition, the accumulation of metal in E. crus-galli that was cultivated with the root exudates was two- to fourfold higher than in plants that were cultivated without the root exudates. The exchangeable soil fraction in the rhizosphere of E. crus-galli grown with root exudates was greater than when E. crus-galli was grown without root exudates. Finally, the BCF and TF values of Cd, Cu and Pb were greater when the root exudates were added (p<0.05). Taken together, these results indicate that root exudates can be used as a natural chelating agent to enhance phytoextraction.
2009. Published by Elsevier B.V.
Similar articles
-
Comparison of the ability of organic acids and EDTA to enhance the phytoextraction of metals from a multi-metal contaminated soil.Bull Environ Contam Toxicol. 2010 Feb;84(2):255-9. doi: 10.1007/s00128-009-9888-0. Epub 2009 Oct 6. Bull Environ Contam Toxicol. 2010. PMID: 19806283
-
Naturally-assisted metal phytoextraction by Brassica carinata: role of root exudates.Environ Pollut. 2009 Oct;157(10):2697-703. doi: 10.1016/j.envpol.2009.04.035. Epub 2009 Jun 3. Environ Pollut. 2009. PMID: 19497650
-
The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis).Chemosphere. 2005 Aug;60(8):1062-71. doi: 10.1016/j.chemosphere.2005.01.020. Chemosphere. 2005. PMID: 15993153
-
Potential of siderophore-producing bacteria for improving heavy metal phytoextraction.Trends Biotechnol. 2010 Mar;28(3):142-9. doi: 10.1016/j.tibtech.2009.12.002. Epub 2010 Jan 13. Trends Biotechnol. 2010. PMID: 20044160 Review.
-
EDTA-assisted Pb phytoextraction.Chemosphere. 2009 Mar;74(10):1279-91. doi: 10.1016/j.chemosphere.2008.11.007. Epub 2009 Jan 1. Chemosphere. 2009. PMID: 19121533 Review.
Cited by
-
Conditioning sulfidic mine waste for growth of Agrostis capillaris--impact on solution chemistry.Environ Sci Pollut Res Int. 2014;21(11):6888-904. doi: 10.1007/s11356-014-2600-x. Epub 2014 Feb 13. Environ Sci Pollut Res Int. 2014. PMID: 24519747
-
The variation of root exudates from the hyperaccumulator Sedum alfredii under cadmium stress: metabonomics analysis.PLoS One. 2014 Dec 29;9(12):e115581. doi: 10.1371/journal.pone.0115581. eCollection 2014. PLoS One. 2014. PMID: 25545686 Free PMC article.
-
Plant-Mycorrhizal Fungi Interactions in Phytoremediation of Geogenic Contaminated Soils.Front Microbiol. 2022 Feb 24;13:843415. doi: 10.3389/fmicb.2022.843415. eCollection 2022. Front Microbiol. 2022. PMID: 35283821 Free PMC article. Review.
-
Activation and tolerance of Siegesbeckia Orientalis L. rhizosphere to Cd stress.Front Plant Sci. 2023 Mar 24;14:1145012. doi: 10.3389/fpls.2023.1145012. eCollection 2023. Front Plant Sci. 2023. PMID: 37035082 Free PMC article.
-
Enlightening the Pathway of Phytoremediation: Ecophysiology and X-ray Fluorescence Visualization of Two Chilean Hardwoods Exposed to Excess Copper.Toxics. 2022 May 6;10(5):237. doi: 10.3390/toxics10050237. Toxics. 2022. PMID: 35622650 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous