Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Jan;7(1):51-61.
doi: 10.1016/j.nurt.2009.10.021.

Antioxidant therapies for traumatic brain injury

Affiliations
Review

Antioxidant therapies for traumatic brain injury

Edward D Hall et al. Neurotherapeutics. 2010 Jan.

Abstract

Free radical-induced oxidative damage reactions, and membrane lipid peroxidation (LP), in particular, are among the best validated secondary injury mechanisms in preclinical traumatic brain injury (TBI) models. In addition to the disruption of the membrane phospholipid architecture, LP results in the formation of cytotoxic aldehyde-containing products that bind to cellular proteins and impair their normal functions. This article reviews the progress of the past three decades in regard to the preclinical discovery and attempted clinical development of antioxidant drugs designed to inhibit free radical-induced LP and its neurotoxic consequences via different mechanisms including the O(2)(*-) scavenger superoxide dismutase and the lipid peroxidation inhibitor tirilazad. In addition, various other antioxidant agents that have been shown to have efficacy in preclinical TBI models are briefly presented, such as the LP inhibitors U83836E, resveratrol, curcumin, OPC-14177, and lipoic acid; the iron chelator deferoxamine and the nitroxide-containing antioxidants, such as alpha-phenyl-tert-butyl nitrone and tempol. A relatively new antioxidant mechanistic strategy for acute TBI is aimed at the scavenging of aldehydic LP byproducts that are highly neurotoxic with "carbonyl scavenging" compounds. Finally, it is proposed that the most effective approach to interrupt posttraumatic oxidative brain damage after TBI might involve the combined treatment with mechanistically complementary antioxidants that simultaneously scavenge LP-initiating free radicals, inhibit LP propagation, and lastly remove neurotoxic LP byproducts.

PubMed Disclaimer

References

    1. Kontos HA, Povlishock JT. Oxygen radicals in brain injury. Cent Nerv Syst Trauma. 1986;3:257–263. - PubMed
    1. Kontos HA, Wei EP. Superoxide production in experimental brain injury. J Neurosurg. 1986;64:803–807. doi: 10.3171/jns.1986.64.5.0803. - DOI - PubMed
    1. Halliwell B, Gutteridge JMC. Free Radicals in biology and medicine. 3rd ed. Oxford: Oxford University Press; 2008.
    1. Zaleska MM, Floyd RA. Regional lipid peroxidation in rat brain in vitro: possible role of endogenous iron. Neurochem Res. 1985;10:397–410. doi: 10.1007/BF00964608. - DOI - PubMed
    1. Sadrzadeh SM, Graf E, Panter SS, Hallaway PE, Eaton JW. Hemoglobin. A biologic fenton reagent. J Biol Chem. 1984;259:14354–14356. - PubMed

Publication types

MeSH terms