Identifying biologically relevant differences between metagenomic communities
- PMID: 20130030
- DOI: 10.1093/bioinformatics/btq041
Identifying biologically relevant differences between metagenomic communities
Abstract
Motivation: Metagenomics is the study of genetic material recovered directly from environmental samples. Taxonomic and functional differences between metagenomic samples can highlight the influence of ecological factors on patterns of microbial life in a wide range of habitats. Statistical hypothesis tests can help us distinguish ecological influences from sampling artifacts, but knowledge of only the P-value from a statistical hypothesis test is insufficient to make inferences about biological relevance. Current reporting practices for pairwise comparative metagenomics are inadequate, and better tools are needed for comparative metagenomic analysis.
Results: We have developed a new software package, STAMP, for comparative metagenomics that supports best practices in analysis and reporting. Examination of a pair of iron mine metagenomes demonstrates that deeper biological insights can be gained using statistical techniques available in our software. An analysis of the functional potential of 'Candidatus Accumulibacter phosphatis' in two enhanced biological phosphorus removal metagenomes identified several subsystems that differ between the A.phosphatis stains in these related communities, including phosphate metabolism, secretion and metal transport.
Availability: Python source code and binaries are freely available from our website at http://kiwi.cs.dal.ca/Software/STAMP CONTACT: beiko@cs.dal.ca
Supplementary information: Supplementary data are available at Bioinformatics online.
Similar articles
-
Visual and statistical comparison of metagenomes.Bioinformatics. 2009 Aug 1;25(15):1849-55. doi: 10.1093/bioinformatics/btp341. Epub 2009 Jun 10. Bioinformatics. 2009. PMID: 19515961
-
ShotgunFunctionalizeR: an R-package for functional comparison of metagenomes.Bioinformatics. 2009 Oct 15;25(20):2737-8. doi: 10.1093/bioinformatics/btp508. Epub 2009 Aug 20. Bioinformatics. 2009. PMID: 19696045
-
Metagenomic signatures of 86 microbial and viral metagenomes.Environ Microbiol. 2009 Jul;11(7):1752-66. doi: 10.1111/j.1462-2920.2009.01901.x. Epub 2009 Mar 18. Environ Microbiol. 2009. PMID: 19302541
-
From bacterial to microbial ecosystems (metagenomics).Methods Mol Biol. 2012;804:35-55. doi: 10.1007/978-1-61779-361-5_3. Methods Mol Biol. 2012. PMID: 22144147 Review.
-
[A review on the bioinformatics pipelines for metagenomic research].Dongwuxue Yanjiu. 2012 Dec;33(6):574-85. doi: 10.3724/SP.J.1141.2012.06574. Dongwuxue Yanjiu. 2012. PMID: 23266976 Review. Chinese.
Cited by
-
SIP metagenomics identifies uncultivated Methylophilaceae as dimethylsulphide degrading bacteria in soil and lake sediment.ISME J. 2015 Nov;9(11):2336-48. doi: 10.1038/ismej.2015.37. Epub 2015 Mar 27. ISME J. 2015. PMID: 25822481 Free PMC article.
-
ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq.PLoS One. 2013 Jul 2;8(7):e67019. doi: 10.1371/journal.pone.0067019. Print 2013. PLoS One. 2013. PMID: 23843979 Free PMC article.
-
The Gut Microbiota of Workers of the Litter-Feeding Termite Syntermes wheeleri (Termitidae: Syntermitinae): Archaeal, Bacterial, and Fungal Communities.Microb Ecol. 2015 Aug;70(2):545-56. doi: 10.1007/s00248-015-0581-z. Epub 2015 Mar 7. Microb Ecol. 2015. PMID: 25749937
-
Soil-borne microbiome: linking diversity to function.Microb Ecol. 2015 Jul;70(1):255-65. doi: 10.1007/s00248-014-0559-2. Epub 2015 Jan 14. Microb Ecol. 2015. PMID: 25586384
-
Trace Metal Contamination Impacts Predicted Functions More Than Structure of Marine Prokaryotic Biofilm Communities in an Anthropized Coastal Area.Front Microbiol. 2021 Feb 19;12:589948. doi: 10.3389/fmicb.2021.589948. eCollection 2021. Front Microbiol. 2021. PMID: 33679628 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources