Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May;62(5):1438-47.
doi: 10.1002/art.27363.

Overexpression of the growth arrest and DNA damage-induced 45alpha gene contributes to autoimmunity by promoting DNA demethylation in lupus T cells

Affiliations
Free article

Overexpression of the growth arrest and DNA damage-induced 45alpha gene contributes to autoimmunity by promoting DNA demethylation in lupus T cells

Yaping Li et al. Arthritis Rheum. 2010 May.
Free article

Abstract

Objective: Demethylation of CD11a and CD70 regulatory regions in CD4+ T cells contributes to the development of autoreactivity and overstimulation of autoantibodies. Because growth arrest and DNA damage-induced 45alpha (GADD45alpha) reduces epigenetic silencing of genes by removing methylation marks, this study examined whether the gadd45A gene could contribute to autoimmunity by promoting DNA demethylation in T cells from patients with systemic lupus erythematosus (SLE).

Methods: Levels of GADD45alpha, CD11a, and CD70 messenger RNA (mRNA) and protein were detected by real-time reverse transcription-polymerase chain reaction and Western blotting or flow cytometry. Global DNA methylation was evaluated using Methylamp global DNA methylation quantification kits. Detection of CD4+ T cell proliferation and autologous B cell IgG antibodies was performed using commercially available kits. CD11a and CD70 promoter methylation was determined with bisulfite sequencing.

Results: Elevated gadd45A mRNA expression and global DNA hypomethylation were observed in CD4+ T cells from SLE patients. The levels of gadd45A mRNA were inversely proportional to the levels of DNA methylation. Positive correlations were found between gadd45A and CD11a/CD70 mRNA levels. Expression of gadd45A mRNA was increased in CD4+ T cells following ultraviolet B irradiation, and this was accompanied by increased levels of CD11a and CD70 mRNA. Moreover, increased expression of gadd45A, CD11a, and CD70 mRNA was accompanied by increased autoreactivity and excessive B cell stimulation in gadd45A-transfected CD4+ T cells. CD11a promoter methylation was also significantly reduced in transfected cells. Transfection of gadd45A small interfering RNA inhibited the autoreactivity of SLE CD4+ T cells and led to significant increases in the methylation levels of the CD11a and CD70 promoter regions.

Conclusion: These findings indicate that gadd45A may contribute to lupus-like autoimmunity by promoting DNA demethylation in SLE CD4+ T cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms