Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jan;43(1):57-61.
doi: 10.5483/bmbrep.2010.43.1.057.

Over-expression of JunB inhibits mitochondrial stress and cytotoxicity in human lymphoma cells exposed to chronic oxidative stress

Affiliations
Free article

Over-expression of JunB inhibits mitochondrial stress and cytotoxicity in human lymphoma cells exposed to chronic oxidative stress

Young-Ok Son et al. BMB Rep. 2010 Jan.
Free article

Abstract

Activator protein-1 can induce either cell survival or death, which is controlled by opposing effects of different Jun members. It is generally accepted that c-Jun is pro-apoptotic, but that JunD is anti-apoptotic in stress-exposed cells. Additionally, although there are reports suggesting that JunB plays a protective role, its role in stress-induced apoptosis remains unclear. Here, we investigated the role of JunB in H(2)O(2)-induced cell death using cells that over-expressed the protein or were transfected with si-JunB. Inhibition of JunB expression accelerated H(2)O(2)-mediated loss of mitochondrial membrane potential (MMP) and cytotoxicity. Conversely, over-expression of JunB protein led to significant inhibition of the MMP loss and cell death. The increase in JunB expression also attenuated nuclear relocation of apoptosis-inducing factor and mitochondrial Bcl-2 reduction that occurred following H(2)O(2) exposure. These results suggest that JunB can signal survival against oxidant-mediated cell death by suppressing mitochondrial stress. [BMB reports 2010; 43(1): 57-61].

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances