Ocean currents help explain population genetic structure
- PMID: 20133354
- PMCID: PMC2871860
- DOI: 10.1098/rspb.2009.2214
Ocean currents help explain population genetic structure
Abstract
Management and conservation can be greatly informed by considering explicitly how environmental factors influence population genetic structure. Using simulated larval dispersal estimates based on ocean current observations, we demonstrate how explicit consideration of frequency of exchange of larvae among sites via ocean advection can fundamentally change the interpretation of empirical population genetic structuring as compared with conventional spatial genetic analyses. Both frequency of larval exchange and empirical genetic difference were uncorrelated with Euclidean distance between sites. When transformed into relative oceanographic distances and integrated into a genetic isolation-by-distance framework, however, the frequency of larval exchange explained nearly 50 per cent of the variance in empirical genetic differences among sites over scales of tens of kilometres. Explanatory power was strongest when we considered effects of multiple generations of larval dispersal via intermediary locations on the long-term probability of exchange between sites. Our results uncover meaningful spatial patterning to population genetic structuring that corresponds with ocean circulation. This study advances our ability to interpret population structure from complex genetic data characteristic of high gene flow species, validates recent advances in oceanographic approaches for assessing larval dispersal and represents a novel approach to characterize population connectivity at small spatial scales germane to conservation and fisheries management.
Figures



Similar articles
-
Asymmetric oceanographic processes mediate connectivity and population genetic structure, as revealed by RADseq, in a highly dispersive marine invertebrate (Parastichopus californicus).Mol Ecol. 2018 May;27(10):2347-2364. doi: 10.1111/mec.14589. Mol Ecol. 2018. PMID: 29654703
-
Seascape genetics: a coupled oceanographic-genetic model predicts population structure of Caribbean corals.Curr Biol. 2006 Aug 22;16(16):1622-6. doi: 10.1016/j.cub.2006.06.052. Curr Biol. 2006. PMID: 16920623
-
Seascape genetics along a steep cline: using genetic patterns to test predictions of marine larval dispersal.Mol Ecol. 2010 Sep;19(17):3692-707. doi: 10.1111/j.1365-294X.2010.04694.x. Epub 2010 Aug 13. Mol Ecol. 2010. PMID: 20723046
-
Long-term oceanographic and ecological research in the Western English Channel.Adv Mar Biol. 2005;47:1-105. doi: 10.1016/S0065-2881(04)47001-1. Adv Mar Biol. 2005. PMID: 15596166 Review.
-
Interactions between behaviour and physical forcing in the control of horizontal transport of decapod crustacean larvae.Adv Mar Biol. 2005;47:107-214. doi: 10.1016/S0065-2881(04)47002-3. Adv Mar Biol. 2005. PMID: 15596167 Review.
Cited by
-
The oceanic concordance of phylogeography and biogeography: a case study in Notochthamalus.Ecol Evol. 2016 Jun 7;6(13):4403-20. doi: 10.1002/ece3.2205. eCollection 2016 Jul. Ecol Evol. 2016. PMID: 27386084 Free PMC article.
-
Advances and challenges in ecological connectivity science.Ecol Evol. 2024 Sep 1;14(9):e70231. doi: 10.1002/ece3.70231. eCollection 2024 Sep. Ecol Evol. 2024. PMID: 39224156 Free PMC article. Review.
-
Population genetic signatures of a climate change driven marine range extension.Sci Rep. 2018 Jun 22;8(1):9558. doi: 10.1038/s41598-018-27351-y. Sci Rep. 2018. PMID: 29934542 Free PMC article.
-
Distinct genetic differentiation and species diversification within two marine nematodes with different habitat preference in Antarctic sediments.BMC Evol Biol. 2017 May 30;17(1):120. doi: 10.1186/s12862-017-0968-1. BMC Evol Biol. 2017. PMID: 28558672 Free PMC article.
-
Phytoplankton diversity explained by connectivity across a mesoscale frontal system in the open ocean.Sci Rep. 2023 Jul 26;13(1):12117. doi: 10.1038/s41598-023-38831-1. Sci Rep. 2023. PMID: 37495754 Free PMC article.
References
-
- Aiken C. M., Navarrete S. A., Castillo M. I., Castilla J. C.2007Along-shore larval dispersal kernels in a numerical ocean model of the central Chilean coast. Mar. Ecol. Prog. Ser. 339, 13–24 (doi:10.3354/meps339013) - DOI
-
- Andrade C. A., Barton E. D., Mooers C. N. K.2003Evidence for an eastward flow along the Central and South American Caribbean coast. J. Geophys. Res. Oceans 108, 3185 (doi:10.1029/2002JC001549) - DOI
-
- Aseltine-Neilson D., et al. 2006Review of some California fisheries for 2005: coastal pelagic finfish, market squid, Dungeness crab, sea urchin, abalone, Kellet's whelk, groundfish, highly migratory species, ocean salmon, nearshore live-fish, Pacific herring, and white seabass. Calif. Cooperative Oceanic Fish. Invest. Rep. 47, 9–29
-
- Baums I. B., Paris C. B., Cherubin L. M.2006A bio-oceanographic filter to larval dispersal in a reef-building coral. Limnol. Oceanogr. 51, 1969–1981
-
- Bekhir K., Borsa P., Chikhi L., Raufaste N., Bonhomme F.2009Genetix 4.05, logiciel sous Windows TM pour la génétique des populations. Montpellier, France: Institut des sciences de lévolution, CNRS UMR 5554, Université de Montpellier II
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources