Protein acetylation in the cardiorenal axis: the promise of histone deacetylase inhibitors
- PMID: 20133912
- DOI: 10.1161/CIRCRESAHA.109.209338
Protein acetylation in the cardiorenal axis: the promise of histone deacetylase inhibitors
Abstract
Acetylation of histone and nonhistone proteins provides a key mechanism for controlling signaling and gene expression in heart and kidney. Pharmacological inhibition of protein deacetylation with histone deacetylase (HDAC) inhibitors has shown promise in preclinical models of cardiovascular and renal disease. Efficacy of HDAC inhibitors appears to be governed by pleiotropic salutary actions on a variety of cell types and pathophysiological processes, including myocyte hypertrophy, fibrosis, inflammation and epithelial-to-mesenchymal transition, and occurs at compound concentrations below the threshold required to elicit toxic side effects. We review the roles of acetylation/deacetylation in the heart and kidney and provide rationale for extending HDAC inhibitors into clinical testing for indications involving these organs.
Similar articles
-
Histone deacetylase inhibitors in cancer therapy.J Clin Oncol. 2009 Nov 10;27(32):5459-68. doi: 10.1200/JCO.2009.22.1291. Epub 2009 Oct 13. J Clin Oncol. 2009. PMID: 19826124 Review.
-
Histone acetylation in gene regulation.Brief Funct Genomic Proteomic. 2006 Sep;5(3):209-21. doi: 10.1093/bfgp/ell028. Epub 2006 Jul 28. Brief Funct Genomic Proteomic. 2006. PMID: 16877467 Review.
-
HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics.Cell Res. 2007 Mar;17(3):195-211. doi: 10.1038/sj.cr.7310149. Cell Res. 2007. PMID: 17325692 Review.
-
Therapeutic potential for HDAC inhibitors in the heart.Annu Rev Pharmacol Toxicol. 2012;52:303-19. doi: 10.1146/annurev-pharmtox-010611-134712. Epub 2011 Sep 26. Annu Rev Pharmacol Toxicol. 2012. PMID: 21942627 Review.
-
The biology and therapeutic implications of HDACs in the heart.Handb Exp Pharmacol. 2011;206:57-78. doi: 10.1007/978-3-642-21631-2_4. Handb Exp Pharmacol. 2011. PMID: 21879446 Review.
Cited by
-
Epigenetics of the failing heart.Heart Fail Rev. 2015 Jul;20(4):435-59. doi: 10.1007/s10741-015-9483-x. Heart Fail Rev. 2015. PMID: 25847519 Review.
-
Clinical potential of angiogenic therapy and cellular reprogramming.JTCVS Open. 2021 Jun;6:108-115. doi: 10.1016/j.xjon.2020.12.023. Epub 2021 Mar 18. JTCVS Open. 2021. PMID: 34746874 Free PMC article.
-
Epigenetic DNA Methylation and Protein Homocysteinylation: Key Players in Hypertensive Renovascular Damage.Int J Mol Sci. 2024 Oct 29;25(21):11599. doi: 10.3390/ijms252111599. Int J Mol Sci. 2024. PMID: 39519150 Free PMC article. Review.
-
Retinoic acid and sodium butyrate suppress the cardiac expression of hypertrophic markers and proinflammatory mediators in Npr1 gene-disrupted haplotype mice.Physiol Genomics. 2016 Jul 1;48(7):477-90. doi: 10.1152/physiolgenomics.00073.2015. Epub 2016 May 6. Physiol Genomics. 2016. PMID: 27199456 Free PMC article.
-
Human umbilical cord mesenchymal stem cell-derived extracellular vesicles carrying miR-655-3p inhibit the development of esophageal cancer by regulating the expression of HIF-1α via a LMO4/HDAC2-dependent mechanism.Cell Biol Toxicol. 2023 Aug;39(4):1319-1339. doi: 10.1007/s10565-022-09759-5. Epub 2022 Oct 12. Cell Biol Toxicol. 2023. PMID: 36222945
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources