Protein S-nitrosylation and cardioprotection
- PMID: 20133913
- PMCID: PMC3137884
- DOI: 10.1161/CIRCRESAHA.109.209452
Protein S-nitrosylation and cardioprotection
Abstract
Nitric oxide (NO) plays an important role in the regulation of cardiovascular function. In addition to the classic NO activation of the cGMP-dependent pathway, NO can also regulate cell function through protein S-nitrosylation, a redox dependent, thiol-based, reversible posttranslational protein modification that involves attachment of an NO moiety to a nucleophilic protein sulfhydryl group. There are emerging data suggesting that S-nitrosylation of proteins plays an important role in cardioprotection. Protein S-nitrosylation not only leads to changes in protein structure and function but also prevents these thiol(s) from further irreversible oxidative/nitrosative modification. A better understanding of the mechanism regulating protein S-nitrosylation and its role in cardioprotection will provide us new therapeutic opportunities and targets for interventions in cardiovascular diseases.
Figures


Similar articles
-
S-nitrosylation: NO-related redox signaling to protect against oxidative stress.Antioxid Redox Signal. 2006 Sep-Oct;8(9-10):1693-705. doi: 10.1089/ars.2006.8.1693. Antioxid Redox Signal. 2006. PMID: 16987022 Free PMC article. Review.
-
S-nitrosylation: an emerging redox-based post-translational modification in plants.J Exp Bot. 2006;57(8):1777-84. doi: 10.1093/jxb/erj211. Epub 2006 May 19. J Exp Bot. 2006. PMID: 16714306 Review.
-
Protein S-nitrosylation: a role of nitric oxide signaling in cardiac ischemic preconditioning.Sheng Li Xue Bao. 2007 Oct 25;59(5):544-52. Sheng Li Xue Bao. 2007. PMID: 17940693
-
Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation.Science. 1998 Jan 9;279(5348):234-7. doi: 10.1126/science.279.5348.234. Science. 1998. PMID: 9422697
-
Identification of new targets of S-nitrosylation in neural stem cells by thiol redox proteomics.Redox Biol. 2020 May;32:101457. doi: 10.1016/j.redox.2020.101457. Epub 2020 Feb 7. Redox Biol. 2020. PMID: 32088623 Free PMC article.
Cited by
-
Antioxidant enzymes as redox-based biomarkers: a brief review.BMB Rep. 2015 Apr;48(4):200-8. doi: 10.5483/bmbrep.2015.48.4.274. BMB Rep. 2015. PMID: 25560698 Free PMC article. Review.
-
Phosphorylation of cyclophilin D at serine 191 regulates mitochondrial permeability transition pore opening and cell death after ischemia-reperfusion.Cell Death Dis. 2020 Aug 19;11(8):661. doi: 10.1038/s41419-020-02864-5. Cell Death Dis. 2020. PMID: 32814770 Free PMC article.
-
Regulation of cardiovascular cellular processes by S-nitrosylation.Biochim Biophys Acta. 2012 Jun;1820(6):752-62. doi: 10.1016/j.bbagen.2011.04.002. Epub 2011 Apr 16. Biochim Biophys Acta. 2012. PMID: 21536106 Free PMC article. Review.
-
Nitrite as a pharmacological intervention for the successful treatment of crush syndrome.Physiol Rep. 2018 Mar;6(5):e13633. doi: 10.14814/phy2.13633. Physiol Rep. 2018. PMID: 29512311 Free PMC article. Review.
-
Redox regulation of the actin cytoskeleton and its role in the vascular system.Free Radic Biol Med. 2017 Aug;109:84-107. doi: 10.1016/j.freeradbiomed.2017.03.004. Epub 2017 Mar 8. Free Radic Biol Med. 2017. PMID: 28285002 Free PMC article. Review.
References
-
- Schulz R, Rassaf T, Massion PB, Kelm M, Balligand JL. Recent advances in the understanding of the role of nitric oxide in cardiovascular homeostasis. Pharmacol Ther. 2005;108:225–256. - PubMed
-
- Zweier JL, Wang P, Samouilov A, Kuppusamy P. Enzyme-independent formation of nitric oxide in biological tissues. Nat Med. 1995;1:804–809. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical