Long-term adaptation of Bacillus subtilis 168 to extreme pH affects chemical and physical properties of the cellular membrane
- PMID: 20135104
- DOI: 10.1007/s00232-010-9226-9
Long-term adaptation of Bacillus subtilis 168 to extreme pH affects chemical and physical properties of the cellular membrane
Abstract
We characterized physical and chemical properties of cell-membrane fragments from Bacillus subtilis 168 (trpC2) grown at pH 5.0, 7.0 and 8.5. Effects of long-term bacterial adaptation reflected in growth rates and in changes of the membrane lipid composition were correlated with lipid order and dynamics using time-resolved fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene. We demonstrate that the pH adaptation results in a modification of a fatty acid content of cellular membranes that significantly influences both the lipid-chain order and dynamics. For cultivation at acidic conditions, the lipid order increases and membrane dynamics decreases compared to pH 7.0. This results in rigid and ordered membranes. Cultivation at pH 8.5 causes slight membrane disordering. Instant pH changes induce qualitatively similar but smaller effects. Proton flux measurements performed on intact cells adapted to both pH 5.0 and 8.5 revealed lower cell-membrane permeability compared to bacteria cultivated at pH optimum. Our results indicate that both acidic and alkalic pH stress represent a permanent challenge for B. subtilis to keep a functional membrane state. The documented adaptation-induced adjustments of membrane properties could be an important part of mechanisms maintaining an optimal intracellular pH at a wide range of extracellular proton concentrations.
Similar articles
-
Time-resolved polarized fluorescence studies of the temperature adaptation in Bacillus subtilis using DPH and TMA-DPH fluorescent probes.Biochim Biophys Acta. 1994 Feb 23;1190(1):1-8. doi: 10.1016/0005-2736(94)90028-0. Biochim Biophys Acta. 1994. PMID: 8110802
-
Cytoplasmic membrane fluidity measurements on intact living cells of Bacillus subtilis by fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene.Folia Microbiol (Praha). 1988;33(1):1-9. doi: 10.1007/BF02928006. Folia Microbiol (Praha). 1988. PMID: 3129345
-
The effect of osmotic stress on the biophysical behavior of the Bacillus subtilis membrane studied by dynamic and steady-state fluorescence anisotropy.Arch Biochem Biophys. 2002 Dec 15;408(2):220-8. doi: 10.1016/s0003-9861(02)00566-0. Arch Biochem Biophys. 2002. PMID: 12464275
-
Cold shock response in Bacillus subtilis.J Mol Microbiol Biotechnol. 1999 Nov;1(2):203-9. J Mol Microbiol Biotechnol. 1999. PMID: 10943551 Review.
-
Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress.Prog Biophys Mol Biol. 2007 Sep-Nov;95(1-3):60-82. doi: 10.1016/j.pbiomolbio.2007.05.001. Epub 2007 May 29. Prog Biophys Mol Biol. 2007. PMID: 17628643 Review.
Cited by
-
Responses of the Emiliania huxleyi proteome to ocean acidification.PLoS One. 2013 Apr 12;8(4):e61868. doi: 10.1371/journal.pone.0061868. Print 2013. PLoS One. 2013. PMID: 23593500 Free PMC article.
-
Role of fatty acids in Bacillus environmental adaptation.Front Microbiol. 2015 Aug 5;6:813. doi: 10.3389/fmicb.2015.00813. eCollection 2015. Front Microbiol. 2015. PMID: 26300876 Free PMC article. Review.
-
Major cellular and physiological impacts of ocean acidification on a reef building coral.PLoS One. 2012;7(4):e34659. doi: 10.1371/journal.pone.0034659. Epub 2012 Apr 11. PLoS One. 2012. PMID: 22509341 Free PMC article.
-
Exploration of isoxanthohumol bioconversion from spent hops into 8-prenylnaringenin using resting cells of Eubacterium limosum.AMB Express. 2020 Apr 24;10(1):79. doi: 10.1186/s13568-020-01015-5. AMB Express. 2020. PMID: 32333233 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources