Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Oct;13(8):1247-59.
doi: 10.1089/ars.2010.3119.

The PAPS-independent aryl sulfotransferase and the alternative disulfide bond formation system in pathogenic bacteria

Affiliations
Review

The PAPS-independent aryl sulfotransferase and the alternative disulfide bond formation system in pathogenic bacteria

Goran Malojcić et al. Antioxid Redox Signal. 2010 Oct.

Abstract

Sulfurylation of biomolecules (often termed sulfonation or sulfation) has been described in many organisms in all kingdoms of life. To date, most studies on sulfotransferases, the enzymes catalyzing sulfurylation, have focused on 3'-phosphate-5'-phosphosulfate (PAPS)-dependent enzymes, which transfer the sulfuryl group from this activated anhydride to hydroxyl groups of acceptor molecules. By contrast, the PAPS-independent aryl sulfotransferases (ASSTs) from bacteria, which catalyze sulfotransfer from phenolic sulfate esters to another phenol in the bacterial periplasm, were not well characterized until recently, although they were first described in 1986 in a search for nonhepatic sulfurylation processes. Recent studies revealed that this unusual class of sulfotransferases differs profoundly in both molecular structure and catalytic mechanism from PAPS-dependent sulfotransferases, and that ASSTs from certain bacterial pathogens are upregulated during infection. In this review, we summarize the literature on the roles of sulfurylation in prokaryotes and analyze the occurrence of ASSTs and their dependence on Dsb proteins catalyzing oxidative folding in the periplasm. Furthermore, we discuss structural differences and similarities between aryl sulfotransferases and PAPS-dependent sulfotransferases.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources