Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2010 Feb 4;5(2):e9041.
doi: 10.1371/journal.pone.0009041.

Safety and immunogenicity of an AMA1 malaria vaccine in Malian children: results of a phase 1 randomized controlled trial

Affiliations
Clinical Trial

Safety and immunogenicity of an AMA1 malaria vaccine in Malian children: results of a phase 1 randomized controlled trial

Mahamadou A Thera et al. PLoS One. .

Abstract

Background: The objective was to evaluate the safety and immunogenicity of the AMA1-based malaria vaccine FMP2.1/AS02(A) in children exposed to seasonal falciparum malaria.

Methodology/principal findings: A Phase 1 double blind randomized controlled dose escalation trial was conducted in Bandiagara, Mali, West Africa, a rural town with intense seasonal transmission of Plasmodium falciparum malaria. The malaria vaccine FMP2.1/AS02(A) is a recombinant protein (FMP2.1) based on apical membrane antigen 1 (AMA1) from the 3D7 clone of P. falciparum, formulated in the Adjuvant System AS02(A). The comparator vaccine was a cell-culture rabies virus vaccine (RabAvert). One hundred healthy Malian children aged 1-6 years were recruited into 3 cohorts and randomized to receive either 10 microg FMP2.1 in 0.1 mL AS02(A), or 25 microg FMP2.1 in 0.25 mL AS02(A), or 50 microg FMP2.1 50 microg in 0.5 mL AS02(A), or rabies vaccine. Three doses of vaccine were given at 0, 1 and 2 months, and children were followed for 1 year. Solicited symptoms were assessed for 7 days and unsolicited symptoms for 30 days after each vaccination. Serious adverse events were assessed throughout the study. Transient local pain and swelling were common and more frequent in all malaria vaccine dosage groups than in the comparator group, but were acceptable to parents of participants. Levels of anti-AMA1 antibodies measured by ELISA increased significantly (at least 100-fold compared to baseline) in all 3 malaria vaccine groups, and remained high during the year of follow up.

Conclusion/significance: The FMP2.1/AS02(A) vaccine had a good safety profile, was well-tolerated, and induced high and sustained antibody levels in malaria-exposed children. This malaria vaccine is being evaluated in a Phase 2 efficacy trial in children at this site.

Trial registration: ClinicalTrials.gov NCT00358332 [NCT00358332].

PubMed Disclaimer

Conflict of interest statement

Competing Interests: SD and DEL hold patents for the FMP2.1 vaccine antigen. OG, AL, WRB, MCD and JC are or were employees of GlaxoSmithKline Biologicals, the manufacturer of the proprietary Adjuvant System AS02A, and hold shares in GlaxoSmithKline. None of the other authors have declared conflict of interest.

Figures

Figure 1
Figure 1. Trial profile.
Figure 2
Figure 2. Grade 3 injection site swelling 1–2 days following immunization with the malaria vaccine.
Injection site swelling was considered grade 3 if it exceeded 20 mm in its widest dimension. Grade 3 swelling was typically unnoticed by participants and parents and came to attention only during physical examinations. It was transient, lasting 1–3 days, and not associated with functional impairment. Shown here is grade 3 injection site swelling of the left shoulder of a study participant.
Figure 3
Figure 3. Anti-AMA1 antibody levels.
Geometric mean of antibodies (µg/mL) to homologous recombinant AMA1 for FMP2.1/AS02A 50 µg dose, FMP2.1/AS02A 25 µg dose, FMP2.1/AS02A 10 µg dose and rabies vaccine recipients. Times of each of 3 immunizations are indicated by arrows. Error bars represent 95 percent confidence intervals.

Similar articles

Cited by

References

    1. Kocken CH, van der Wel AM, Dubbeld MA, Narum DL, van de Rijke FM, et al. Precise timing of expression of a Plasmodium falciparum-derived transgene in Plasmodium berghei is a critical determinant of subsequent subcellular localization. J Biol Chem. 1998;273:15119–15124. - PubMed
    1. Deans JA, Alderson T, Thomas AW, Mitchell GH, Lennox ES, et al. Rat monoclonal antibodies which inhibit the in vitro multiplication of Plasmodium knowlesi. Clin Exp Immunol. 1982;49:297–309. - PMC - PubMed
    1. Thomas AW, Deans JA, Mitchell GH, Alderson T, Cohen S. The Fab fragments of monoclonal IgG to a merozoite surface antigen inhibit Plasmodium knowlesi invasion of erythrocytes. Mol Biochem Parasitol. 1984;13:187–199. - PubMed
    1. Hodder AN, Crewther PE, Anders RF. Specificity of the protective antibody response to apical membrane antigen 1. Infect Immun. 2001;69:3286–3294. - PMC - PubMed
    1. Dutta S, Haynes JD, Moch JK, Barbosa A, Lanar DE. Invasion-inhibitory antibodies inhibit proteolytic processing of apical membrane antigen 1 of Plasmodium falciparum merozoites. Proc Natl Acad Sci U S A. 2003;100:12295–12300. - PMC - PubMed

Publication types

MeSH terms

Associated data