Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Mar;339(3):625-37.
doi: 10.1007/s00441-009-0918-3. Epub 2010 Feb 6.

Muscle and neuronal differentiation in primary cell culture of larval Mytilus trossulus (Mollusca: Bivalvia)

Affiliations

Muscle and neuronal differentiation in primary cell culture of larval Mytilus trossulus (Mollusca: Bivalvia)

Nelly A Odintsova et al. Cell Tissue Res. 2010 Mar.

Abstract

Molluscan in vitro technology allows the study of the differentiation of isolated cells undergoing experimental manipulations. We have used the immunofluorescence technique and laser scanning microscopy to investigate the organization of muscle proteins (actin, myosin, paramyosin, and twitchin) and the localization of neurotransmitters (serotonin and FMRFamide) in cultured mussel larval cells. Differentiation into muscle and neuron-like cells occurs during the cultivation of mussel cells from premyogenic and prenervous larval stages. Muscle proteins are colocalized in contractile cells through all stages of cultivation. The cultivation of mussel cells on various substrates and the application of integrin receptor blockers suggest that an integrin-dependent mechanism is involved in cell adhesion and differentiation. Dissociated mussel cells aggregate and become self-organized in culture. After 20 days of cultivation, they form colonies in which serotonin- and FMRFamide-immunoreactive cells are located centrally, whereas muscle cells form a contractile network at the periphery. The pattern of thick and thin filaments in cultivated mussel cells changes according to the scenario of muscle arrangement in vivo: initially, a striated pattern of muscle filaments forms but is then replaced by a smooth muscle pattern with a diffuse distribution of muscle proteins, typical of muscles of adult molluscs. Myogenesis in molluscs thus seems to be a highly dynamic and potentially variable process. Such a "flexible" developmental program can be regarded as a prerequisite for the evolution of the wide variety of striated and smooth muscles in larval and adult molluscs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources