A statistically rigorous test for the identification of parent-fragment pairs in LC-MS datasets
- PMID: 20143830
- PMCID: PMC2829950
- DOI: 10.1021/ac902361f
A statistically rigorous test for the identification of parent-fragment pairs in LC-MS datasets
Abstract
Untargeted global metabolic profiling by liquid chromatography-mass spectrometry generates numerous signals that are due to unknown compounds and whose identification forms an important challenge. The analysis of metabolite fragmentation patterns, following collision-induced dissociation, provides a valuable tool for identification, but can be severely impeded by close chromatographic coelution of distinct metabolites. We propose a new algorithm for identifying related parent-fragment pairs and for distinguishing these from signals due to unrelated compounds. Unlike existing methods, our approach addresses the problem by means of a hypothesis test that is based on the distribution of the recorded ion counts, and thereby provides a statistically rigorous measure of the uncertainty involved in the classification problem. Because of technological constraints, the test is of primary use at low and intermediate ion counts, above which detector saturation causes substantial bias to the recorded ion count. The validity of the test is demonstrated through its application to pairs of coeluting isotopologues and to known parent-fragment pairs, which results in test statistics consistent with the null distribution. The performance of the test is compared with a commonly used Pearson correlation approach and found to be considerably better (e.g., false positive rate of 6.25%, compared with a value of 50% for the correlation for perfectly coeluting ions). Because the algorithm may be used for the analysis of high-mass compounds in addition to metabolic data, we expect it to facilitate the analysis of fragmentation patterns for a wide range of analytical problems.
Figures









Similar articles
-
Construction of confidence regions for isotopic abundance patterns in LC/MS data sets for rigorous determination of molecular formulas.Anal Chem. 2010 Sep 1;82(17):7319-28. doi: 10.1021/ac101278x. Anal Chem. 2010. PMID: 20690638 Free PMC article.
-
An experimental approach to enhance precursor ion fragmentation for metabolite identification studies: application of dual collision cells in an orbital trap.Rapid Commun Mass Spectrom. 2011 May 30;25(10):1356-62. doi: 10.1002/rcm.4996. Rapid Commun Mass Spectrom. 2011. PMID: 21504000
-
Combined hydrophilic interaction liquid chromatography-scanning field asymmetric waveform ion mobility spectrometry-time-of-flight mass spectrometry for untargeted metabolomics.Anal Bioanal Chem. 2019 Sep;411(24):6309-6317. doi: 10.1007/s00216-019-01790-6. Epub 2019 Apr 23. Anal Bioanal Chem. 2019. PMID: 31011786 Free PMC article.
-
Role of liquid chromatography-high-resolution mass spectrometry (LC-HR/MS) in clinical toxicology.Clin Toxicol (Phila). 2012 Sep;50(8):733-42. doi: 10.3109/15563650.2012.713108. Epub 2012 Aug 13. Clin Toxicol (Phila). 2012. PMID: 22888997 Review.
-
Current LC-MS methods and procedures applied to the identification of new steroid metabolites.J Steroid Biochem Mol Biol. 2016 Sep;162:41-56. doi: 10.1016/j.jsbmb.2015.12.012. Epub 2015 Dec 17. J Steroid Biochem Mol Biol. 2016. PMID: 26709140 Review.
Cited by
-
Does the mass spectrometer define the marker? A comparison of global metabolite profiling data generated simultaneously via UPLC-MS on two different mass spectrometers.Anal Chem. 2010 Oct 1;82(19):8226-34. doi: 10.1021/ac1016612. Anal Chem. 2010. PMID: 20828141 Free PMC article.
-
Orders of magnitude extension of the effective dynamic range of TDC-based TOFMS data through maximum likelihood estimation.J Am Soc Mass Spectrom. 2014 Oct;25(10):1824-7. doi: 10.1007/s13361-014-0961-5. Epub 2014 Jul 22. J Am Soc Mass Spectrom. 2014. PMID: 25049115 Free PMC article.
-
MetAssign: probabilistic annotation of metabolites from LC-MS data using a Bayesian clustering approach.Bioinformatics. 2014 Oct;30(19):2764-71. doi: 10.1093/bioinformatics/btu370. Epub 2014 Jun 9. Bioinformatics. 2014. PMID: 24916385 Free PMC article.
-
LC-MS-based metabolomics.Mol Biosyst. 2012 Feb;8(2):470-81. doi: 10.1039/c1mb05350g. Epub 2011 Nov 1. Mol Biosyst. 2012. PMID: 22041788 Free PMC article. Review.
-
Construction of confidence regions for isotopic abundance patterns in LC/MS data sets for rigorous determination of molecular formulas.Anal Chem. 2010 Sep 1;82(17):7319-28. doi: 10.1021/ac101278x. Anal Chem. 2010. PMID: 20690638 Free PMC article.
References
-
- Raamsdonk L. M.; Teusink B.; Broadhurst D.; Zhang N. S.; Hayes A.; Walsh M. C.; Berden J. A.; Brindle K. M.; Kell D. B.; Rowland J. J.; Westerhoff H. V.; van Dam K.; Oliver S. G. Nat. Biotechnol. 2001, 19, 45–50. - PubMed
-
- Nicholson J. K.; Lindon J. C.; Holmes E. Xenobiotica 1999, 29 (11), 1181–1189. - PubMed
-
- Want E. J.; Nordstrom A.; Morita H.; Siuzdak G. J. Proteome Res. 2007, 6, 459–468. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources