Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jun;18(3):221-9.
doi: 10.1109/TNSRE.2010.2041593. Epub 2010 Feb 8.

Experimental analysis of accuracy in the identification of motor unit spike trains from high-density surface EMG

Affiliations

Experimental analysis of accuracy in the identification of motor unit spike trains from high-density surface EMG

Ales Holobar et al. IEEE Trans Neural Syst Rehabil Eng. 2010 Jun.

Abstract

The aim of this study was to compare the decomposition results obtained from high-density surface electromyography (EMG) and concurrently recorded intramuscular EMG. Surface EMG signals were recorded with electrode grids from the tibialis anterior, biceps brachii, and abductor digiti minimi muscles of twelve healthy men during isometric contractions ranging between 5% and 20% of the maximal force. Bipolar intramuscular EMG signals were recorded with pairs of wire electrodes. Surface and intramuscular EMG were independently decomposed into motor unit spike trains. When averaged over all the contractions of the same contraction force, the percentage of discharge times of motor units identified by both decompositions varied in the ranges 84%-87% (tibialis anterior), 84%-86% (biceps brachii), and 87%-92% (abductor digiti minimi) across the force levels analyzed. This index of agreement between the two decompositions was linearly correlated with a self-consistency measure of motor unit discharge pattern that was based on coefficient of variation for the interspike interval (R(2) = 0.68 for tibialis anterior, R(2) = 0.56 for biceps brachii, and R(2) = 0.38 for abductor digiti minimi). These results constitute an important contribution to the validation of the noninvasive approach for the investigation of motor unit behavior in isometric low-force tasks.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources