Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Mar 1;123(Pt 5):723-35.
doi: 10.1242/jcs.062497. Epub 2010 Feb 9.

Role of TI-VAMP and CD82 in EGFR cell-surface dynamics and signaling

Affiliations

Role of TI-VAMP and CD82 in EGFR cell-surface dynamics and signaling

Lydia Danglot et al. J Cell Sci. .

Abstract

The v-SNARE TI-VAMP (VAMP7) mediates exocytosis during neuritogenesis, phagocytosis and lysosomal secretion. It localizes to endosomes and lysosomes but also to the trans-Golgi network. Here we show that depletion of TI-VAMP enhances the endocytosis of activated EGF receptor (EGFR) without affecting constitutive endocytosis of EGFR, or transferrin uptake. This increased EGFR internalization is mainly clathrin dependent. Searching for defects in EGFR regulators, we found that TI-VAMP depletion reduces the cell surface amount of CD82, a tetraspanin known to control EGFR localization in microdomains. We further show that TI-VAMP is required for secretion from the Golgi apparatus to the cell surface, and that TI-VAMP-positive vesicles transport CD82. Quantum dots video-microscopy indicates that depletion of TI-VAMP, or its cargo CD82, restrains EGFR diffusion and the area explored by EGFR at the cell surface. Both depletions also impair MAPK signaling and enhance endocytosis of activated EGFR by increased recruitment of AP-2. These results highlight the role of TI-VAMP in the secretory pathway of a tetraspanin, and support a model in which CD82 allows EGFR entry in microdomains that control its clathrin-dependent endocytosis and signaling.

PubMed Disclaimer

Publication types

LinkOut - more resources