Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1977 Oct 3;470(1):84-91.
doi: 10.1016/0005-2736(77)90063-3.

Interaction of phosphate with monovalent cation uptake in yeast

Interaction of phosphate with monovalent cation uptake in yeast

G M Roomans et al. Biochim Biophys Acta. .

Abstract

The uptake of monovalent cations by yeast via the monovalent cation uptake mechanism is inhibited by phosphate. The inhibition of Rb+ uptake shows saturation kinetics and the phosphate concentration at which half-maximal inhibition is observed is equal to the Km of phosphate for the sodium-independent phosphate uptake mechanism. The kinetic coefficients of Rb+ and TI+ uptake are affected by phosphate: the maximal rate of uptake is decreased and the apparent affinity constants for the translocation sites are increased. In the case of Na+ uptake, the inhibition by phosphate may be partly or completely compensated by stimulation of Na+ uptake via a sodium-phosphate cotransport mechanism. Phosphate effects a transient stimulation of the efflux of the lipophilic cation dibenzyldimethylammonium from preloaded yeast cells and a transient inhibition of dibenzyldimethylammonium uptake. Possibly, the inhibition of monovalent cation uptake in yeast can be explained by a transient depolarization of the cell membrane by phosphate.

PubMed Disclaimer

LinkOut - more resources