Fitness flux and ubiquity of adaptive evolution
- PMID: 20145113
- PMCID: PMC2840135
- DOI: 10.1073/pnas.0907953107
Fitness flux and ubiquity of adaptive evolution
Abstract
Natural selection favors fitter variants in a population, but actual evolutionary processes may decrease fitness by mutations and genetic drift. How is the stochastic evolution of molecular biological systems shaped by natural selection? Here, we derive a theorem on the fitness flux in a population, defined as the selective effect of its genotype frequency changes. The fitness-flux theorem generalizes Fisher's fundamental theorem of natural selection to evolutionary processes including mutations, genetic drift, and time-dependent selection. It shows that a generic state of populations is adaptive evolution: there is a positive fitness flux resulting from a surplus of beneficial over deleterious changes. In particular, stationary nonequilibrium evolution processes are predicted to be adaptive. Under specific nonstationary conditions, notably during a decrease in population size, the average fitness flux can become negative. We show that these predictions are in accordance with experiments in bacteria and bacteriophages and with genomic data in Drosophila. Our analysis establishes fitness flux as a universal measure of adaptation in molecular evolution.
Conflict of interest statement
The authors declare no conflict of interest.
Figures








Similar articles
-
Niche construction and the environmental term of the price equation: How natural selection changes when organisms alter their environments.Evol Dev. 2023 Nov;25(6):451-469. doi: 10.1111/ede.12452. Epub 2023 Aug 2. Evol Dev. 2023. PMID: 37530093
-
Fitness optimization and evolution of permanent replicator systems.J Math Biol. 2021 Feb 5;82(3):15. doi: 10.1007/s00285-021-01548-8. J Math Biol. 2021. PMID: 33544189
-
From fitness landscapes to seascapes: non-equilibrium dynamics of selection and adaptation.Trends Genet. 2009 Mar;25(3):111-9. doi: 10.1016/j.tig.2009.01.002. Epub 2009 Feb 18. Trends Genet. 2009. PMID: 19232770
-
Natural selection and the maximization of fitness.Biol Rev Camb Philos Soc. 2016 Aug;91(3):712-27. doi: 10.1111/brv.12190. Epub 2015 Apr 21. Biol Rev Camb Philos Soc. 2016. PMID: 25899152 Review.
-
Identifying Targets of Selection in Laboratory Evolution Experiments.J Mol Evol. 2023 Jun;91(3):345-355. doi: 10.1007/s00239-023-10096-2. Epub 2023 Feb 21. J Mol Evol. 2023. PMID: 36810618 Free PMC article. Review.
Cited by
-
Clonal interference in the evolution of influenza.Genetics. 2012 Oct;192(2):671-82. doi: 10.1534/genetics.112.143396. Epub 2012 Jul 30. Genetics. 2012. PMID: 22851649 Free PMC article.
-
The evolutionarily stable distribution of fitness effects.Genetics. 2015 May;200(1):321-9. doi: 10.1534/genetics.114.173815. Epub 2015 Mar 10. Genetics. 2015. PMID: 25762525 Free PMC article.
-
Selection Maintains Protein Interactome Resilience in the Long-Term Evolution Experiment with Escherichia coli.Genome Biol Evol. 2021 Jun 8;13(6):evab074. doi: 10.1093/gbe/evab074. Genome Biol Evol. 2021. PMID: 33878164 Free PMC article.
-
Evolving generalists in switching rugged landscapes.PLoS Comput Biol. 2019 Oct 1;15(10):e1007320. doi: 10.1371/journal.pcbi.1007320. eCollection 2019 Oct. PLoS Comput Biol. 2019. PMID: 31574088 Free PMC article.
-
Tuning environmental timescales to evolve and maintain generalists.Proc Natl Acad Sci U S A. 2020 Jun 9;117(23):12693-12699. doi: 10.1073/pnas.1914586117. Epub 2020 May 26. Proc Natl Acad Sci U S A. 2020. PMID: 32457160 Free PMC article.
References
-
- Fisher RA. In: The Genetical Theory of Natural Selection: A Complete Variorum Edition. Bennet H, editor. Oxford, UK: Oxford University Press; 2000.
-
- Price GR. Selection and covariance. Nature. 1970;227:520–521. - PubMed
-
- Kimura M. On the change of population fitness by natural selection. Heredity. 1958;12:145–167.
-
- Iwasa Y. Free fitness that always increases in evolution. J Theor Biol. 1988;135:265–281. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Molecular Biology Databases