Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Feb 11:10:37.
doi: 10.1186/1471-2148-10-37.

Discovery and identification of a male-killing agent in the Japanese ladybird Propylea japonica (Coleoptera: Coccinellidae)

Affiliations

Discovery and identification of a male-killing agent in the Japanese ladybird Propylea japonica (Coleoptera: Coccinellidae)

Tamsin Mo Majerus et al. BMC Evol Biol. .

Abstract

Background: Endosymbionts that manipulate the reproduction of their hosts have been reported widely in invertebrates. One such group of endosymbionts is the male-killers. To date all male-killers reported are bacterial in nature, but comprise a diverse group. Ladybirds have been described as a model system for the study of male-killing, which has been reported in multiple species from widespread geographic locations. Whilst criteria of low egg hatch-rate and female-biased progenic sex ratio have been used to identify female hosts of male-killers, variation in vertical transmission efficiency and host genetic factors may result in variation in these phenotypic indicators of male-killer presence. Molecular identification of bacteria and screening for bacterial presence provide us with a more accurate method than breeding data alone to link the presence of the bacteria to the male-killing phenotype. In addition, by identifying the bacteria responsible we may find evidence for horizontal transfer between endosymbiont hosts and can gain insight into the evolutionary origins of male-killing. Phylogenetic placement of male-killing bacteria will allow us to address the question of whether male-killing is a potential strategy for only some, or all, maternally inherited bacteria. Together, phenotypic and molecular characterisation of male-killers will allow a deeper insight into the interactions between host and endosymbiont, which ultimately may lead to an understanding of how male-killers identify and kill male-hosts.

Results: A male-killer was detected in the Japanese coccinellid, Propylea japonica (Thunberg) a species not previously known to harbour male-killers. Families produced by female P. japonica showed significantly female-biased sex ratios. One female produced only daughters. This male-killer trait was maternally inherited and antibiotic treatment produced a full, heritable cure. Molecular analysis identified Rickettsia to be associated with the trait in this species of ladybird.

Conclusion: We conclude that P. japonica is host to a bacterial male-killer that is vertically inherited with variable transmission efficiency. Rickettsia presence correlates with the male-killing trait, but there is some variation in the phenotypic expression of the trait due to interaction with host factors. Phylogenetic analysis using the 16S rRNA and 17 kDa antigen genes suggests there may have been horizontal transfer of Rickettsial male-killers between different ladybird hosts.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Egg hatch rate versus sex ratio for N and SR/FB matrilines of Fuchu P. japonica.
Figure 2
Figure 2
16S rDNA phylogenetic tree indicating the position of the P. japonica male-killer amongst the Rickettsias. * indicates endosymbiont host name; mk indicates male-killer.
Figure 3
Figure 3
17 kDa antigen gene phylogenetic tree indicating the position of the P. japonica male-killer amongst the Rickettsias. * indicates endosymbiont host name; mk indicates male-killer.

Similar articles

Cited by

References

    1. Hackett KJ, Lynn DE, Williamson DL, Ginsberg AS, Whitcomb RF. Cultivation of the Drosophila spiroplasma. Science. 1986;232:1253–1255. doi: 10.1126/science.232.4755.1253. - DOI - PubMed
    1. Hurst GDD, Schulenburg JHGVD, Majerus TMO, Bertrand D, Zakharov IA, Baungaard J, Völkl W, Stouthamer R, Majerus MEN. Invasion of one insect species, Adalia bipunctata, by two different male-killing bacteria. Insect Mol Biol. 1999;8:133–139. doi: 10.1046/j.1365-2583.1999.810133.x. - DOI - PubMed
    1. Majerus TMO, Schulenburg JHGvd, Majerus MEN, Hurst GDD. Molecular identification of a male-killing agent in the ladybird Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) Insect Mol Biol. 1999;8:551–555. doi: 10.1046/j.1365-2583.1999.00151.x. - DOI - PubMed
    1. Jiggins FM, Hurst GD, Jiggins CD, vd Schulenburg JH, Majerus ME. The butterfly Danaus chrysippus is infected by a male-killing Spiroplasma bacterium. Parasitology. 2000;120:439–446. doi: 10.1017/S0031182099005867. - DOI - PubMed
    1. Tinsley MC, Majerus MEN. A new male-killing parasitism: Spiroplasma bacteria infect the ladybird beetle Anisosticta novemdecimpunctata (Coleoptera: Coccinellidae) Parasitology. 2006;132:757–765. doi: 10.1017/S0031182005009789. - DOI - PubMed

LinkOut - more resources