Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jun 15;178(1-3):202-8.
doi: 10.1016/j.jhazmat.2010.01.064. Epub 2010 Jan 22.

Combined advanced oxidation processes for the synergistic degradation of ibuprofen in aqueous environments

Affiliations

Combined advanced oxidation processes for the synergistic degradation of ibuprofen in aqueous environments

Jagannathan Madhavan et al. J Hazard Mater. .

Abstract

Ibuprofen (IBP) is a widely used analgesic and anti-inflammatory drug and has been found as a pollutant in aqueous environments. The sonolytic, photocatalytic and sonophotocatalytic degradations of IBP in the presence of homogeneous (Fe(3+)) and heterogeneous photocatalysts (TiO(2)) were studied. When compared with sonolysis and photocatalysis, a higher degradation rate was observed for sonophotocatalysis in the presence of TiO(2) or Fe(3+) and also a slight synergistic enhancement was found with a synergy index of 1.3 and 1.6, respectively. Even though TiO(2) sonophotocatalysis showed an additive process effect in the mineralization, a significant synergy effect was observed for the sonophotocatalysis in the presence of Fe(3+). This might be due to the formation of photoactive complexes between Fe(3+) and IBP degradation products, such as carboxylic acids. High performance liquid chromatography (HPLC) and electrospray ionisation mass spectrometry (ESMS) techniques were employed for the identification of the degradation intermediates. The sonication of IBP led to the formation of its mono- and di-hydroxylated intermediates. Apart from the hydroxylated intermediates, products formed due to the oxidation of propanoic acid and isobutyl substituents of IBP were also observed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources