Brain reward circuitry beyond the mesolimbic dopamine system: a neurobiological theory
- PMID: 20149820
- PMCID: PMC2894302
- DOI: 10.1016/j.neubiorev.2010.02.001
Brain reward circuitry beyond the mesolimbic dopamine system: a neurobiological theory
Abstract
Reductionist attempts to dissect complex mechanisms into simpler elements are necessary, but not sufficient for understanding how biological properties like reward emerge out of neuronal activity. Recent studies on intracranial self-administration of neurochemicals (drugs) found that rats learn to self-administer various drugs into the mesolimbic dopamine structures-the posterior ventral tegmental area, medial shell nucleus accumbens and medial olfactory tubercle. In addition, studies found roles of non-dopaminergic mechanisms of the supramammillary, rostromedial tegmental and midbrain raphe nuclei in reward. To explain intracranial self-administration and related effects of various drug manipulations, I outlined a neurobiological theory claiming that there is an intrinsic central process that coordinates various selective functions (including perceptual, visceral, and reinforcement processes) into a global function of approach. Further, this coordinating process for approach arises from interactions between brain structures including those structures mentioned above and their closely linked regions: the medial prefrontal cortex, septal area, ventral pallidum, bed nucleus of stria terminalis, preoptic area, lateral hypothalamic areas, lateral habenula, periaqueductal gray, laterodorsal tegmental nucleus and parabrachical area.
Published by Elsevier Ltd.
Figures











Similar articles
-
Administration of the GABAA receptor antagonist picrotoxin into rat supramammillary nucleus induces c-Fos in reward-related brain structures. Supramammillary picrotoxin and c-Fos expression.BMC Neurosci. 2010 Aug 17;11:101. doi: 10.1186/1471-2202-11-101. BMC Neurosci. 2010. PMID: 20716371 Free PMC article.
-
Localization of brain reinforcement mechanisms: intracranial self-administration and intracranial place-conditioning studies.Behav Brain Res. 1999 Jun;101(2):129-52. doi: 10.1016/s0166-4328(99)00022-4. Behav Brain Res. 1999. PMID: 10372570 Review.
-
Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex.Brain Res Rev. 2007 Nov;56(1):27-78. doi: 10.1016/j.brainresrev.2007.05.004. Epub 2007 May 17. Brain Res Rev. 2007. PMID: 17574681 Free PMC article. Review.
-
Afferent and efferent connections of the medial preoptic area in the rat: a WGA-HRP study.Brain Res Bull. 1985 Mar;14(3):261-72. doi: 10.1016/0361-9230(85)90091-7. Brain Res Bull. 1985. PMID: 3995367
-
The mesopontine rostromedial tegmental nucleus: A structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta.J Comp Neurol. 2009 Apr 20;513(6):566-96. doi: 10.1002/cne.21891. J Comp Neurol. 2009. PMID: 19235216 Free PMC article.
Cited by
-
The Sensory Impact of Nicotine on Noradrenergic and Dopaminergic Neurons of the Nicotine Reward - Addiction Neurocircuitry.J Addict Res Ther. 2016 Apr;7(2):274. doi: 10.4172/2155-6105.1000274. Epub 2016 Apr 7. J Addict Res Ther. 2016. PMID: 27347434 Free PMC article.
-
Connections of the lateral hypothalamic area juxtadorsomedial region in the male rat.J Comp Neurol. 2012 Jun 15;520(9):1831-90. doi: 10.1002/cne.23064. J Comp Neurol. 2012. PMID: 22488503 Free PMC article.
-
Neuropathic pain has sex-specific effects on oxycodone-seeking and non-drug-seeking ensemble neurons in the dorsomedial prefrontal cortex of mice.Addict Biol. 2024 Aug;29(8):e13430. doi: 10.1111/adb.13430. Addict Biol. 2024. PMID: 39121884 Free PMC article.
-
Introducing the PLOS ONE Collection on the neuroscience of reward and decision making.PLoS One. 2020 Oct 8;15(10):e0240505. doi: 10.1371/journal.pone.0240505. eCollection 2020. PLoS One. 2020. PMID: 33031482 Free PMC article.
-
DRG2 Deficient Mice Exhibit Impaired Motor Behaviors with Reduced Striatal Dopamine Release.Int J Mol Sci. 2019 Dec 20;21(1):60. doi: 10.3390/ijms21010060. Int J Mol Sci. 2019. PMID: 31861806 Free PMC article.
References
-
- Albert R, Jeong H, Barabasi A-L. Error and attack tolerance of complex networks. Nature. 2000;406:378–382. - PubMed
-
- Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 1986;9:357–381. - PubMed
-
- Allen CN, Crawford IL. GABAergic agents in the medial septal nucleus affect hippocampal theta rhythm and acetylcholine utilization. Brain Res. 1984;322:261–267. - PubMed
-
- Araki M, McGeer PL, Kimura H. The efferent projections of the rat lateral habenular nucleus revealed by the PHA-L anterograde tracing method. Brain Res. 1988;441:319–330. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources